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Theorem 3.10 Let M be the following system of axioms:

� ` X! Y if Y � X (trivial fds) (F1)
X! Y ` X! XY (fd-augmentation) (F2)
fX! Y; Y ! Zg ` X! Z (fd-transitivity) (F3)
X!! Y ` X!! 
� Y (mvd-complementation) (M1)
X!! Y `WX!! V Y if V � W (mvd-augmentation) (M2)
fX!! Y; Y !! Zg ` X!! Z � Y (mvd-pseudotransitivity) (M3)
X! Y ` X!! Y (mvds implied by fds) (FM1)
fX!! Y; Y ! Zg ` X! Z � Y (mixed pseudotransitivity) (FM2)

M is sound for the implication of fds and mvds.

Proof The soundness of axioms F1{F3 has been dealt with in Theorem 3.2

and the soundness of M1 and FM1 was shown in Corollary 3.1. It remains to

show that axiomsM2, M3 and FM2 are sound. Let PRS be a primitive relation

scheme and let prs be a possible relation instance of PRS.

� axiom M2: Assume prs satis�es X !! Y . Let t; u 2 prs with t[WX] =

u[WX]. We have to show that there exists v 2 sot such that v[WXY ] =

t[WXY ] and v[XW (
�V Y )] = u[XW (
�V Y )]. Since prs satis�es X!! Y

and since, in particular, t[X] = u[X], it follows that there exists v 2 prs such

that v[XY ] = t[XY ] and v[X(
 � Y )] = u[X(
 � Y )]. Furthermore, since

t[W ] = u[W ] it follows that necessarily v[W ] = t[W ] = u[W ], whence the

desired result.

� axiom M3: Assume prs satis�es both X !! Y and Y !! Z. Let t; u 2

prs with t[X] = u[X]. We prove that there exists w 2 prs such that

w[X(Z�Y )] = t[X(Z�Y )] and w[X(
�(Z�Y ))] = u[X(
�(Z�Y ))]. For

sake of clarity, note that 
 � (Z � Y ) can be rewritten as Y (
� Z). Hence

we can rewrite the last condition as w[XY (
 � Z)] = u[XY (
 � Z)]. Since

prs satis�es X!! Y (and hence, by Corollary 3.1, also X!! 
 � Y ) and

since in particular t[X] = u[X], it follows that there exists v 2 prs such that

v[X(
� Y )] = t[X(
� Y )] and v[XY ] = u[XY ]. In particular, v[Y ] = u[Y ].

Since prs satis�es Y !! Z it then follows that there exists w 2 sot such that

w[Y Z] = v[Y Z] and w[Y (
� Z)] = u[Y (
 � Z)]. Let us now �t everything

together in order to show that w is the desired tuple. From v[XY ] = u[XY ]

and the construction of w it follows that w[XY ] = u[XY ] = v[XY ]. Hence

w[XY Z] = v[XY Z] and w[XY (
� Z)] = u[XY (
� Z)]. Hence the second

condition that w should satisfy is ful�lled. From w[XY Z] = v[XY Z] and

v[X(
� Y )] = t[X(
� Y )] it follows that w and t agree on the intersection

XY Z \X(
� Y ) = X(Z � Y ), and this is exactly the �rst condition that w

must satisfy.

� axiom FM2: Assume prs satis�es X!! Y and Y ! Z. Suppose t1 and t2

are tuples of prs satisfying t1[X] = t2[X]. Since prs satis�es X!! Y there

exists u 2 sot such that u[XY ] = t1[XY ] and u[X(
 � Y )] = t2[X(
 � Y )].

Since u[Y ] = t1[Y ] and because of Y ! Z, it follows that u[Z] = t1[Z]. From
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this last equality and from u[
 � Y ] = t2[
 � Y ] it then follows that t1 and

t2 agree on the intersection Z \ (
� Y ) = Z � Y , i. e. t1[Z � Y ] = t2[Z � Y ].

Hence prs satis�es X! Z � Y .

The next question that arises is of course whether the above axiom system

is also complete. We invite the reader to try to infer the mvds and fds listed in

Example 3.13 from the given set of mvds and fds using the rules of axiom system

M. You should come to the conclusion that this axiom system does indeed allow

you to derive all these constraints from the given ones. Of course this is not a

proof!

In order to shed some more light on this problem, let us re-examine the

proof of Theorem 3.2 in which we showed the soundness, completeness and

non-redundancy of an axiom system for fds. In the part where we showed the

completeness, it turned out to be important to consider for a given set of fds and

a given set of attributes X, all the fds implied by that set with X as left-hand

side. Therefore, we needed to de�ne X. This suggests us to examine the set of all

fds and mvds implied by a given set of fds and mvds with a �xed set of attributes

as left-hand side. Is it possible to give a fairly simple description of this set?

Therefore we �rst establish some additional inference rules.

Lemma 3.1 The following rules can be derived from the axiom system M in

Theorem 3.10. (and hence are sound):

X!! Y ` X!! 
� Y (mvd-complementation) (M1)
fX!! Y;X!! Zg ` X!! Y \ Z (mvd-intersection) (M4)
fX!! Y;X!! Zg ` X!! Y Z (mvd-union) (M5)
fX!! Y;X!! Zg ` X!! Y � Z (mvd-di�erence) (M6)

Proof First note that rule M1 is already an axiom of M that is only repeated

here for sake of completeness. Let us consider rule M4. From X!! Y one can

deduce X!! X(
� Y ) by applying �rst axiom M1 and then axiom M2. From

X!! Z one can derive X(
� Y )!! Z, again by using axiom M2. If we now

use the pseudotransitivity axiom M3 on X!! X(
� Y ) and X(
� Y )!! Z

we get X!! Z� (X(
�Y )). Since Z� (X(
�Y )) equals (Y \Z)�X, a �nal

application of axiomM2 yields the desired result. RulesM5 andM6 can be easily

derived from axiomM1 and ruleM4 knowing that Y Z = 
�((
�Y )\(
�Z))

and Y � Z = Y \ (
� Z) and are left as an exercise to the reader.

A set of sets that is closed under complementation and intersection (and, as

a consequence, under union and set di�erence) can be described as consisting of

all possible unions of members of the partition induced by that set. We are going

to use this idea in order to describe the set of fds and mvds that can be derived

from a given set of fds and mvds.
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Theorem 3.11 Let PRS = (
;�; dom) be a primitive relation scheme and

let FD and MD be the sets of all fds and mvds of PRS respectively. Let

SC � FD [MD. Let DepB(X) be the partition induced by fY j X!! Y 2

SC+

FD[MD
g3 and let X = fA j X! A 2 SC+

FD[MD
g.4 Then:

� X!! Y 2 SC+ if and only if there exists Y � DepB(X) such that Y =
S
Y;

� X! Y 2 SC+ if and only if Y � X;

� if A 2 X, then fAg 2 DepB(X).

The set DepB(X) is called the dependency basis of X for the set SC.

Proof Left as an exercise to the reader.

Example 3.14 Let us consider a primitive relation scheme PRS with:

� 
 = fA;B;C;D;E; F;Gg

� SC = fAB!! CDE;AB!! EFGg.

Let X = AB. Since SC does not contain fds, the rules of Theorem 3.10 allow

only to derive trivial fds. Hence X = fA;Bg and fAg and fBg certainly

belong to DepB(X). By rules M1, M4 and M6, AB!! CD, AB!! E and

AB!! FG can also be derived from SC. The reader can check by constructing

a counterexample that it is impossible to infer AB!! C, AB!! D, AB!! F

or AB!! G from SC. Since the rules in Theorem 3.10 are sound, this mvds

are not in SC+ either. Hence DepB(X) = fA;B;CD;E; FGg. Recall that, in

accordance with an earlier remark, A, B and E stand for the sets fAg, fBg and

fCg respectively.

Of course, a more eÆcient procedure to compute X and DepB(X) is needed.

The algorithm we give here is based on [15].

Algorithm 3.3 Attributeset Closure and Dependency Basis

Input: X � 
 and SC, a set of fds and mvds of a primitive relation scheme

PRS = (
;�; dom).

Output: X, DepB(X)

Method:

var OLDX, NEWX, XPLUS, DBU, DBV, W : set of attributes;

OLDD, NEWD, DEPBX : set of sets of attributes;

NEWX := X;

NEWD := ffAg j A 2 Xg [ f
�Xg;

repeat

OLDX := NEWX;

OLDD := NEWD;

3In the remainder of this section, we shall write SC+

FD[MD
as SC+ for short.

4If we suppose that SC � FD, we get back the de�nition of X given in the proof of

Theorem 3.2.
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for each U! V in SC do

DBU :=
S
fW jW 2 NEWD & W \ U 6= �g;

DBV := V � DBU;

if DBV 6= �

then

begin

NEWX := NEWX [ DBV;

NEWD := fW �DBV jW 2 NEWD & W � DBV 6= �g

[ffAg j A 2 DBVg

end

od

for each U!! V in SC do

DBU :=
S
fW jW 2 NEWD & W \ U 6= �g;

DBV := V � DBU;

if DBV 6= �

then

for each W in NEWD do

if (W \ DBV 6= �) and (W \ DBV 6=W )

then

NEWD := (NEWD� fWg)

[fW \ DBV;W �DBVg;

od

od

until (NEWX = OLDX) and (NEWD = OLDD);

XPLUS := NEWX;

DEPBX := NEWD;

return(XPLUS;DEPBX)

Theorem 3.12 Algorithm 3.3 is correct and computes attributeset closure and

dependency basis in polynomial time.

Proof We shall only give an outline of the proof. The reader is invited to �ll

out the details. First, we have to show that the operations performed on NEWX

and OLDX do not violate the following conditions which are trivially satis�ed

after initialization:

� X! NEWX 2 SC+;

� for all W 2 NEWD, X!!W 2 SC+.

This can be easily achieved using various axioms and the rules we derived from

them. Then we have to show that X!!W 0 is not in SC+ for any proper subset

W 0 of a set W in DEPBX. This can be done by showing that from the sets
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fX! Y j Y � XPLUS g

and

fX!! Y j Y is a union of some members of DEPBX g

no other fds and mvds can be derived using an axiom ofM in Theorem 3.10. Fi-

nally, the time complexity of Algorithm 3.3 can be computed in a straightforward

manner.

It is still possible to improve the time complexity of Algorithm 3.3. There exist

various quadratic and even almost linear algorithms in the literature ([53, 59, 96]).

We do not intend however to discuss them here. We now illustrate Algorithm 3.3

with an example.

Example 3.15 Let us consider a primitive relation scheme PRS with:

� 
 = fA;B;C;D;E; F;Gg

� SC = fAB!! CD;C!! F;C! Eg.

and calculate the dependency basis of X = AB using Algorithm 3.3. Initially we

have:
NEWX=AB
NEWD=fA;B;CDEFGg

After the application of AB!! CD we get:

NEWX=AB
NEWD=fA;B;CD;EFGg

An application of C!! F gives:

NEWX=AB
NEWD=fA;B;CD;EG; Fg

Finally, after the use of C! E we get:

NEWX=ABE
NEWD=fA;B;CD;E; F;Gg

It is easily seen that another pass through SC does not lead to any additional

changes. Hence the algorithm gives:

X=XPLUS = ABE

DepB(X)=DEPBX = fA;B;CD;E; F;Gg

In order for this algorithm to be the basis of an algorithm to decide the

implication problem for fds and mvds, we have to prove the completeness of the

axiom system M introduced in Theorem 3.10, for which we are now ready.

Theorem 3.13 The axiom system M in Theorem 3.10 is sound, complete and

non-redundant for the implication of fds and mvds.
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Proof First recall from Theorem 3.10 thatM is sound. Let PRS be a primitive

relation scheme. Let FD be the set of all fds of PRS and let MD be the set of

all mvds of PRS. Let SC � FD [MD. We have to show that SC� � SC+.5

Let W1; : : : ;Wk be those member of DepB(X) that are not contained in X. We

now construct the following relation s:

X W1 W2 � � � Wk

0 : : : 0 0 : : : 0 0 : : : 0 � � � 0 : : : 0
0 : : : 0 1 : : : 1 0 : : : 0 � � � 0 : : : 0
0 : : : 0 0 : : : 0 1 : : : 1 � � � 0 : : : 0
0 : : : 0 1 : : : 1 1 : : : 1 � � � 0 : : : 0

...
0 : : : 0 1 : : : 1 1 : : : 1 � � � 1 : : : 1

So s contains 2k tuples.6 We now show that s satis�es all the fds and mvds

of SC. Therefore, let U ! V 2 SC. Let W be the union of those Wi's that

intersect U . (W may be empty). Clearly, XW! V 2 SC+. Now let t1 and t2 be

tuples of s such that t1[U ] = t2[U ]. Note that by construction of s it follows that

t1[XW ] = t2[XW ]. By Theorem 3.11, we have that X!! XW is in SC+. Hence

by mixed pseudo-transitivity, X! V �XW is in SC+, whence V �XW � X.

By construction of s it then follows that t1[V �XW ] = t2[V �XW ]. Since we

already know that t1 and t2 agree on XW , we get that t1[V ] = t2[V ] whence

satisfaction of U! V by s. Now assume that U!! V is in SC. We must show

that whenever there exist tuples t1 and t2 that agree on U , there also exists a tuple

t such that t[UV ] = t1[UV ] and t[U(
�V )] = t2[U(
�V )]. Let W be again the

union of those Wi's that intersect U . Then it follows from the construction of s

that t1[XW ] = t2[XW ]. Also, by Theorem 3.11, it follows that X!! XW is in

SC+. By mvd-augmentation, XW!! V is in SC+. Hence, by mvd-transitivity,

X!! V �XW is in SC+. So V �XW is a union ofWi's. From the construction

of s the existence of the above described tuple t now easily follows.

Now suppose that X! Y is in SC�. Since s satis�es all the dependencies in

SC, it also satis�es all those of SC�. Hence Y � X by construction of s, which

in turn implies that X! Y is in SC+. Similarly, suppose that X!! Y is in

SC�. Then again s must satisfy this mvd and this can only be the case if Y is

the union of some members of X, whence X!! Y 2 SC+. Hence SC� � SC+

as had to be shown.

It only remains to be shown that the axiom system is non-redundant. This

can be done according to the principle used in the proof of Theorem 3.2 in a

straightforward way. Therefore we leave this part of the proof to the reader.

5
SC

� of course denotes SC�FD[MD.
6Note that in case only fds are involved, k = 1 and W1 = 
 � X . Hence the relation

instance s constructed above then becomes the relation instance r constructed in the proof of

Theorem 3.2.
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From Theorem 3.12 and Theorem 3.13 it immediately follows:

Corollary 3.2 The implication problem for fds and mvds is decidable in poly-

nomial time.

3.4 Join Dependencies

In the previous section, we presented mvds as a necessary and suÆcient condition

to decompose a relation into two subrelations without losing information. We

shall however not end our discussion on decomposition-related constraints here,

since there exist situations, as was shown by J.-M. Nicolas [81], in which a relation

can be decomposed into three subrelations but not into two. We illustrate this

point with an example.

Example 3.16 Consider again the relation scheme RS = (
;�; dom;M; SC)

of Example 3.12. Recall in particular that SC consists of only one constraint

saying that whenever a DRINKER drinks a BEER, he drinks that BEER in every

BAR where it is served. We showed that this constraint can be represented by

the mvd BEER!! DRINKER (or, equivalently, by BEER!! BAR).

In this example, we consider a relation scheme RS 0 obtained from RS by

slightly modifying the only constraint. We now assume that whenever a DRINKER

drinks a BEER and whenever that DRINKER frequents a BAR in which that BEER

is served, he drinks that BEER in that BAR. We call this constraint sc0. Let us

now consider the following instance of RS 0:

DRINKER BEER BAR

Jones Tuborg Tivoli
Jones Tuborg Far West
Jones Carlsberg Tivoli
Smith Tuborg Tivoli

It is readily veri�ed that this instance satis�es the new constraint sc0. It is also

easily seen that none of the mvds

BEER !! DRINKER

DRINKER!! BAR

BAR !! BEER

holds. Hence it is not possible to decompose RS 0 into two subschemes without

losing information. It is however easy to see that there exists a lossless de-

composition of RS 0 into three subschemes, namely the projections of RS 0 onto

fDRINKER;BEERg, fBEER;BARg and fDRINKER;BARg respectively. If we
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apply this decomposition strategy on the above instance, we get:

DRINKER BEER

Jones Tuborg
Jones Carlsberg
Smith Tuborg

BEER BAR

Tuborg Tivoli
Tuborg Far West

Carlsberg Tivoli

DRINKER BAR

Jones Tivoli
Jones Far West
Smith Tivoli

It is easily seen that we can recover the original instance by performing a natural

join on these projections. Moreover, a closer examination of the constraint

sc0 reveals that it actually says that RS 0 can be decomposed into the three

subschemes mentioned above.

Nicolas [81] called a constraint such as the one we introduced in the above

example, which yields a necessary and suÆcient condition for a relation to be

decomposable into three subrelations, a mutual dependency. The generalization

is of course obvious [91]:

De�nition 3.9 Let PRS = (
;�; dom) be a primitive relation scheme. Let

X1; : : : ; Xk � 
 with
Sk

i=1Xi = 
. A join dependency X1 ./ � � � ./ Xk over PRS

is a constraint that is satis�ed by a possible relation instance prs if and only if

for all t1; : : : ; tk 2 prs with ti[Xi \ Xj] = tj[Xi \Xj] for all i; j = 1; : : : ; k there

exists a tuple t 2 prs such that t[Xi] = ti[Xi] for all i = 1; : : : ; k.

Hence the constraint sc0 in Example 3.16 is a join dependency (jd) with three

components that can be denoted as

fDRINKER;BEERg ./ fBEER;BARg ./ fDRINKER;BARg:

From De�nition 3.9 we can immediately derive:

Theorem 3.14 Let RS = (
;�; dom;M; SC) be a relation scheme. Let X1; : : : ;

Xk � 
 with
Sk

i=1Xi = 
. SC j= X1 ./ � � � ./ Xk if and only if for each relation

instance r of RS we have that r = �(r;X1) ./ � � � ./ �(r;Xk).

Theorem 3.14 explains the notation we used to denote a jd. Theorem 3.14

also yields the following corollary:

Corollary 3.3 Let PRS = (
;�; dom) be a primitive relation scheme.

� Let X; Y � 
. Then X!! Y , XY ./ X(
� Y ).

� Let X1; X2 � 
 with X1 [X2 = 
. Then X1 ./ X2 , X1 \X2!! X1.
7

Proof Follows immediately from Theorem 3.14 and Theorem 3.9.

7Instead of X1 we might also have written X2, X1 �X2 or X2 �X1.


