
Design Issues for General-Purpose
Adaptive Hypermedia Systems

Hongjing Wu, Erik de Kort, Paul De Bra
Eindhoven University of Technology

E-mail: hongjing@win.tue.nl, erik.de.kort@asml.nl, debra@win.tue.nl

ABSTRACT
A hypermedia application offers its users much freedom to
navigate through a large hyperspace. For authors finding a
good compromise between offering navigational freedom
and offering guidance is difficult, especially in applications
that target a broad audience. Adaptive hypermedia (AH)
offers (automatically generated) personalized content and
navigation support, so the choice between freedom and
guidance can be made on an individual basis. Many
adaptive hypermedia systems (AHS) are tightly integrated
with one specific application. In this paper we study design
issues forgeneral-purpose adaptive hypermedia systems,
built according to an application-independent architecture.
We use the Dexter-based AHAM reference model for
adaptive hypermedia [7] to describe the functionality of such
systems at the conceptual level. We concentrate on the
architecture and behavior of ageneral-purpose adaptive
engine. Such an engine performs adaptation and updates the
user modelaccording to a set ofadaptation rulesspecified
in anadaptation model. In our study of the behavior of such
a system we concentrate on the issues ofterminationand
confluence, which are important to detect potential problems
in an adaptive hypermedia application. We draw parallels
with static rule analysis in active database systems [1,2]. By
using common properties of AHS we are able to obtain
more precise (less conservative) results for AHS than for
active databases in general, especially for the problem of
termination.

KEYWORDS: adaptive hypermedia, user modeling,
adaptation rules, termination, confluence, active databases

INTRODUCTION
Web-based hypermedia systems are becoming increasingly
popular as tools for user-driven access to information.
They typically offer users a lot of freedom to navigate
through a large hyperspace. Authors of hypermedia
applications may wish to provide some personal guidance
to their users without taking away that navigational
freedom (as linear books do):

• A typical hypermedia system presents the same links on
a page to all users. Personal guidance requires that the
system offer each user (some) personalized links or
navigation tools (such as a partial table of contents, a
map, or a sorted list of suggested links). The system
should thereby take into account what the user read
before, what her interests and preferences are, etc.

• When writing pages of a hyperdocument the author must
make an assumption about what foreknowledge the user
has when accessing each page. The least thing the
application should take into account is which pages the
user read before. The system can then decide to add
some prerequisite explanations, or to omit information
that is redundant because the user saw it before (on
another page).

Adaptive hypermedia systems perform personalization in
these two ways:adaptive navigation supportandadaptive
content. The adaptation (or personalization) is based on a
user modelthat represents relevant aspects of the user such
as preferences, knowledge and interests. The system
gathers information about the user by observing the use of
the application, and in particular by observing thebrowsing
behavior of the user.

Many adaptive hypermedia systems exist to date. The
majority of them are used in educational applications, but
some are used, for example, for on-line information
systems or information retrieval systems. An overview of
systems, methods and techniques for adaptive hypermedia
can be found in [3]. “Personalized” websites are becoming
popular. They typically have a name that starts with “My”
(My Yahoo, My Excite, etc.) Some of these systems are
only adaptable, meaning that the user enters a user profile
through a registration form, and the system doesn’t change
that profile unless the user explicitly updates it (again
through a form). Anadaptivesystem performs updates to
the user profile automatically by observing the user’s
browsing behavior. A primitive form of adaptation is found
in systems that log which pages a user accesses, in order to
be able to mark pages as “new” or “old” and in order to be
able to generate “what’s new” pages. In fact, the traditional
Web-browser behavior of changing the color of links from
blue to purple after visiting a page is already a form of
adaptive behavior.

We have developed a reference model for the architecture
of adaptive hypermedia applications: AHAM (forAdaptive

HypermediaApplicationModel) [7], which is an extension
of the Dexter hypermedia reference model [8,9]. AHAM
acknowledges that doing “useful” and “usable” adaptation
in a given application depends on three factors:

• The application must be based on adomain model,
describing how the information content of the
application or “hyper-document” is structured (using
concepts and concept relationships).

• The system must construct and maintain a fine-grained
user modelthat represents a user’s preferences, knowl-
edge, goals, browsing history and other relevant aspects.

• The system must be able to perform adaptation of the
content and link structure, based on the domain model
and user model. In order to do so the author must
provide anadaptation modelconsisting ofadaptation
rules. The rules define both the process of generating
the adaptive presentation and that of updating the user
model. An AHS may offer some built-in rules for
common adaptation aspects and user model updates.
This reduces the author’s task of providing such rules.
The AHS may also offer a rule language through which
authors can define additional rules.

The division into adomain model(DM), user model(UM)
and adaptation model(AM) provides a clear separation of
concerns when developing an adaptive hypermedia
application. Unfortunately, a common shortcoming in
many current AHS is that these three factors or components
are not clearly separated. The AHAM model advocates the
separation of these components in future AHS.

In this paper we focus onhow an AHS actually performs
the adaptation. We define arule definition languageand an
adaptation engine(AE) to executeadaptation rules. In
previous work [12] we argued thatadaptation rulesshould
exist at the author level and the system level. (System-
defined rules simplify the task that remains for the author.)
However, for the analysis of the complete rule system this
distinction is irrelevant and therefore not considered in this
paper. We describe ageneral-purpose rule systemthat is
more powerful than that of most AHS. As a result, some
of the design problems we present may not be present in
many AHS with a simpler rule system or a hardcoded
adaptation engine. We focus on two design issues:

• We want a powerful rule language through which
authors and system designers can specify how different
aspects of the domain and user interact to generate an
adapted presentation. It becomes difficult to predict
whether the interaction between different rules can cause
rules to trigger each other indefinitely. In this paper we
study the problem of deciding when the rule execution is
guaranteed to terminate. In other words, we try to decide
which types and combinations of adaptation rules are
“safe”. Aside fromterminationthere is also the issue of
efficiency (or “fast” termination), but we do not discuss
that topic in this paper.

• Even when the execution of the adaptation rules
terminates, the AE may not always produce predictable
results. When the same user action under the same
circumstances (domain model and user model) is
guaranteed to always produce the same result the AHS is
said to beconfluent. We describe an analysis technique
to decide whether an AHS is confluent.

This paper is organized as follows. First we briefly recall
the AHAM reference model for adaptive hypermedia
applications. In the next section we define the rule
language associated with AHAM and explain how the rule
execution works in AHAM. We then analyze termination
and confluence of the AE and we draw parallels with rule
execution in active database systems [1,2].

AHAM, A DEXTER-BASED REFERENCE MODEL
In hypermedia applications the emphasis is always on the
information nodes and on the link structure connecting
these nodes. The Dexter model [8,9] captures this in what
it calls the Storage Layer. It represents adomain model
(DM), i.e. the author's view on the application domain. We
use the termsconcept and concept relationshipas a
generalization ofnodesand links. In adaptive hypermedia
applications the central role of DM is shared with auser
model(UM). UM represents the relationship between the
user and the domain model. The user may specify updates
to UM (e.g. through forms), and the system also updates
UM by tracking the user’s browsing behavior.

In order to perform adaptation based on DM and UM an
“author” needs to specify how the user's interaction with
the AHS influences the presentation of the information
from DM. In AHAM [7], this is done by means of an
adaptation model(AM) consisting of adaptation rules.
(Note that our earlier work [7] used slightly different
terms.) An adaptation engine(AE) uses these rules to
manipulate link anchors (from the Dexter model's
anchoring layer) and to generate what the Dexter model
calls thepresentation specifications. Figure 1 shows the
overall structure of AHAM (in the same way the Dexter
model is depicted in [8,9]).

Fig. 1 Structure of adaptive hypermedia applications

The architecture we describe in this paper is only an
abstract representation of an AHS. Each AHS has some
mechanism to decide how to perform adaptation and how to
update UM based on the user’s actions. AHAM describes
this mechanism as consisting of an adaptation engine that is
executing adaptation rules. This does not imply that
AHAM can only represent AHS that are rule based.

The domain model
The domain model of an adaptive hypermedia application
consists ofconceptsand concept relationships. Concepts
are objects with a unique object identifier, and a structure
that includes attribute-value pairs and link anchors. (The
remainder of the structure is not relevant for this paper.)

A conceptrepresents an abstract information item from the
application domain. It can be either anatomic conceptor a
composite concept.

• An atomic concept corresponds to a fragment of
information. It is primitive in the model. This means
that its content, attribute- and anchor values have no
meaningwithin the model but belong to the “Within-
component layer”.

• A composite concepthas a sequence of children (sub-
concepts) and aconstructorfunction that describes how
the children belong together. The children of a
composite concept are either all atomic concepts or all
composite concepts. A composite concept with (only)
atomic children is called apage.

The composite concept hierarchy must be a DAG (directed
acyclic graph). Also, every atomic concept must be
included in some composite concept. Figure 2 illustrates a
part of a concept hierarchy.

Fig. 2 : Part of a concept hierarchy

A concept relationshipis an object (with a unique identifier
and attribute-value pairs) that relates a sequence of two or
more concepts. Each concept relationship has a type. The
most common type is the hypertextlink . In AHAM we
consider other types of relationships as well, which play a
role in the adaptation, e.g. the typeprerequisite. When a
concept C1 is a prerequisite for C2 it means that the user
should read C1 before C2. It does not imply that there must
be a (direct navigational) link from C1 to C2. It only means
that the system must “somehow” take into account that
“visiting” C 2 is not desired before C1 has been “visited”. In
AHAM authors and/or system designers can (in theory)
define arbitrarily many types of relationships. In fact, one
can even imagine an AHS without links (like in spatial

hypertext). Figure 3 shows a small example of a set of
concepts and concept relationships. In this example we
also assume the presence of another type of concept
relationship: theinhibitor . C4 “inhibits” C1, which means
that after visiting C4 it is no longer desirable to visit concept
C1. One way to make the “desirability” of a link
destination clear to the user is to use different presentations
of link anchors, e.g. by giving them a different color.

C1

C4

C3C2

prerequisite

link

inhibit

link link

linklink
prerequisite

prerequisite

Fig. 3: Example concept relationship structure

Note that a graph presentation like Figure 3 only works for
binary concept relationships (such as links, some
prerequisites and inhibitors). AHAM allows relationships
between a (longer)sequenceof concepts, in order to be able
to describe features likeguard fieldsin Storyspace.

Also note that some AHS may represent the concept
hierarchy through apart-of concept relationship type. The
AHA system [6] for instance does not treat the concept
hierarchy differently from other concept relationship types.
We will also usepart-of in some examples in this paper.

The user model
A user model (UM) consists of named entities for which we
store a number of attribute-value pairs. For each entity
there may be different attributes, but in practice most
entities will have the same attributes. Therefore, to
represent the user model we use atable structure, in which
for each entity the attribute values for that concept are
stored. Most entities in UM representconceptsfrom DM.
(Some other entities may represent a user’s background, job
title, or preferences such as preferred media types, learning
style, colors, or also platform specific properties such as
screen size or network bandwidth.) In our examples we
will often refer to user model attributes that are typical for
DM-related concepts, e.g.knowledge(about a concept),
read (to denote that a page or fragment was read by the
user) andready-to-read(to denote that the user is “ready”
to view information about this concept or to read this page.

The analogy between the structure of the user model and
that of database tables suggests that maintaining a user
model is very similar to updating a database. Thetablecan
be considered as auniversal relation instance, but because
different attributes may be appropriate for different entities
or concepts it may be a universal instance with null values.
(We do not consider the decomposition of this table to
obtain a more efficient storage structure in this paper.)

In the sequel we will always consider UM as being the user
model for a single user. In this paper we do not discuss
adaptation to group behavior.

The user model consists of apersistentpart and avolatile
part. For each concept we consider attributes of which the
value is maintained, e.g. whether a page has been read, or
what the level of knowledge about a concept is. An AHS
may opt to recalculate some other attribute values on the
fly. Some AHS may verify whether the prerequisites for a
concept are satisfied each time that concept is accessed or
when a link to that concept is shown, while another AHS
may store this information as aready-to-readattribute in
UM. In this paper we only consider the user model updates
and the adaptation that occur as a result of a single user
action (e.g. following a link, accessing a menu, and
submitting a form). Therefore it is not relevant to
distinguish persistent and volatile attributes.

The adaptation model
The adaptation model (AM) is the key issue in this paper: it
describes how the AHS should perform its adaptation. This
includes content adaptation, link adaptation and updating
the user model. AM is defined as a set ofadaptation rules
that form the connection between DM, UM and the
presentation (specification) to be generated. The syntax of
adaptation rules is AHS-dependent. In fact, in many AHS
a number of rules will be hard-coded into the system and
not visible or accessible to authors. In AHAM we must
make these rules explicit in order to be able to describe the
complete behavior of the AHS.

Let us consider a small example of an AHS in which the
relationship between fragments and pages is expressed
trough a set-valued attribute “children”. In the user model
each fragment has a persistent attribute “relevant” to
indicate whether it is desirable for this user, and a volatile
attribute “pres” to indicate whether the fragment will be
included in the presentation of a page that contains it.
(“pres” would be part of thePresentation Specification
layer in the Dexter model.) A rule for accessing a page
could then be:

< access(P) and F∈P.children and F.relevant = true
⇒ F.pres := show >

This rule only expresses an example of possible behavior of
an AHS, in an example of possible rule languages (actually
the syntax used in [7]). Instead of hiding undesired
fragments the AHS may opt to gray them out, as described
in [10]. Instead of describing the relationship between
pages and fragments through an attribute of the page we
could describe it through an attribute of a fragment, or even
as a separate concept hierarchy relationship. We will give
more examples, in a more database (SQL)-like syntax, and
describe a language with its semantics later.

The adaptation engine
An AHS does not only have a domain model, user model
and adaptation model, but also anadaptation engine, which

is a software environment that performs the following
functions:

• It offers generic page selectors and constructors. For
each composite concept the corresponding selector is
used to determine which page(s) to display when the
user follows a link to that composite concept. For each
page a constructor is used for building the adaptive
presentation of that page. Page constructors allow for
dynamic content like a ranked list of links. (Truly
generated content is not dealt with explicitly as it is
considered part of the within-component layer.)

• It optionally offers a (very simple programming)
language for describing new page selectors and con-
structors. For instance, in AHA [6] a page constructor
consists of simple commands for the conditional
inclusion of fragments. (AHA has no language for
describing page selectors. It only supports links to
pages, not to composite concepts.)

• It performs adaptation by executing the page selectors
and constructors. This means selecting a page, selecting
fragments, organizing and presenting them in a specific
way, etc. The adaptation also involves adaptation to
links by manipulating link anchors depending on the
state of the link (like enabled, disabled and hidden).

• It updates the user model (instance) each time the user
visits a page. The engine will change some attribute
values for each atomic concept of displayed fragments of
a page, of the page as a whole and possibly of some
other (composite) concepts as well (all depending on the
adaptation rules).

The adaptation engine thus provides the implementation-
dependent aspects, while DM, UM, and AM describe the
information and adaptation at the conceptual, imple-
mentation independent level. Note that DM, UM and AM
together thus do not describe the complete behavior of an
AHS. The same set ofadaptation rulesmay result in a
different presentation depending on theexecution modelof
the adaptation engine. In the following sections the role of
this execution model will be explained. The challenge, of
course, is to design an AE that ensures that rule execution
always terminates and produces a predictable result. We
shall see that this is not always possible.

ADAPTATION RULE LANGUAGE
In the previous section we have described the functionality
of AHAM’s different parts. In this section we give a more
detailed description of the way in which adaptation is
expressed, and how it is performed by the adaptive engine.

In the sequel we present an adaptation rule language and
assume that this language is available to authors to express
the desired adaptation and user model updates. The actual
rule system and internal behavior of a “real” AHS needs to
be translated to our rule language (and back) in order to
infer the actual behavior of the AHS from the behavior of
our abstract description in this paper.

To make authoring adaptation rules easier for the author,
we providegeneric rules that apply to all concepts or all
concept relationships of a certain type. In addition we
provide specific rules to describe rules for a specific
concept, set of concepts or a specific concept relationship.
In a generic adaptation rule(bound) variables are used that
represent concepts and concept relationships. Aspecific
adaptation ruleuses concrete concepts from DM or UM
instead of variables. Other than that both types of rules look
the same. Specific rules always take precedence over
generic ones, i.e. a specific rule can be used to override or
eliminate a (conflicting) generic rule.

In database literature we find two types of rule (or actually
trigger) formalisms that seem useful to describe the
behavior of an adaptive engine:Event Condition Action
(ECA) rules andCondition Action(CA) rules. At first sight
it seems that ECA rules are best for AHS, because the
system always reacts to an event generated by the user
(such as clicking on a link anchor). However, after this
initial event all rules are just triggered through changes in
the user model. By translating the initial event to a simple
user model update (updating some attribute value to
represent the “click”) we can also describe the behavior of
an AHS through CA rules.

ECA and CA rules have been studied extensively in the
context of active databases [1,2]. ECA rules consist of
three “independent” parts: anevent, a condition and an
action. The semantics of an ECA rule are that when the
event is triggered, the condition is checked. If the condition
holds, the action will be executed. ECA rules are general
rules to describe triggers; their conditions may be true (or
false) independent of the cause of the event. The analysis
techniques for ECA rules that are known to date [1] are
“conservative” in the sense that they take into account the
events triggered by an action, but not the conditions. CA
rules are much simpler than ECA rules: whenever a rule’s
condition becomes true that rule’s action is executed.
Hence, a CA rule is like an ECA rule where the fact that the
condition becomes trueis the eventthat triggers the rule.
As already described in [2] many practical applications of
ECA rules have the property that a rule’s condition
becomes true exactly when that rule’s event occurs. Such
rules are calledquasi-CAand behave exactly like CA rules.

In this paper we describe adaptation rules for AHS as CA
rules. In the next subsections we first present the syntax of
our abstract rule language, we then illustrate this language
with some examples and finally we describe the execution
model for our adaptation rules.

AHAM-CA rule syntax
Since both DM and UM have a structure that consists of
objects (like concepts and concept relationships) with an
object identity and a set of (named) attributes it appears
natural to base our rule language on trigger- and query
languages for databases. Doing so also makes it relatively

easy to draw a parallel between the properties of our
language with CA rules and those of CA rules in active
databases, as studied in [2]. In [2] the relational algebra
syntax is used, but in order to obtain easily readable rules
we base our language on the well-known SQL syntax.

The syntax of the rule system is partially described by the
following grammar:

<rule>::= C→A
C::= <query>
<query>::= select <name_list>

where <condition>
A::= update <list_assign>

{ where <condition> }
<condition>::= <Boolean> ‘(’ <condition> ‘)’

not <condition>
exists<query> <relationship>
<condition>and <condition>
<condition>or <condition>
<expr> <eq_op> <expr>

<eq_op>::= ‘=’ ‘≠’ ‘>’ ‘<’ ‘≤’ ‘≥’ in
<expr>::= <constant> <name> <query>

<expr> <bmath_op> <expr> |
<umath_op> <expr>

<relationship>::= <name> (<name> {, <name>}+)
<bmath_op>::= ‘+’ ‘−’ ‘∗’ ‘/’ maxmin
<umath_op>::= ‘−’
<list_assign>::= <name>:= <expr> {;<list_assign> }*

(Note that we did not define several details like the syntax
for constants, names, etc.)

From the context it will always be clear whether a <name>
refers to a concept or concept relationship from DM or a
concept from UM, so we omit the SQLfrom clause
altogether.

In our examples (below) we also use the convention that
uppercase names are used to indicate concept variables
(used ingenericrules) whereas lowercase names are used
for specific concepts (used inspecific rules and in
instantiatedrules defined below) and for attributes.

Examples
The examples we give are intended to illustrate our rule
language. They are not meant to present generally accepted
behavior of AHS (as all systems behave differently).

Example 1
This is the rule example we gave before, but now rewritten
in our rule language. The (generic) rule specifies that all
relevant fragments of page P will be shown to the user
when this page is presented.

C: selectP.access
where P.access =true

A: update F.pres := “show”
where part-of(F, P)and F.relevant =true

The meaning of the different clauses in this example is as
follows:

1. The rule monitors for a change in P.access because
P.access appears in theselectclause.

2. The rule’s action is only executed when the condition
in the where clause is true for some of the mentioned
objects, in this case for some page P.

3. For all fragments F that are part of page P and for
which the “relevant” attribute is true the “pres”
attribute is set to the value “show”. (Note that in a
“real” SQL syntax we would need anexists and
subquery here to check for the existence of the part-of
relationship between F and P.)

An interesting aspect of this example is that it shows how
information is carried over from thestorage layer(where
the “part-of” relationship in DM and the “relevant” attribute
in UM belong) to the presentation specification layer
(where the “pres” attribute belongs) of the AHAM model.

Example 2
Suppose that the knowledge value of a concept can have the
values “not known”, “known” and “well known”. (In later
examples we will also assume the property that “not
known” < “known” < “well known”.) A concept can be
“ready_to_read” or not. Accessing a concept may have the
effect described by the following rule:

C: selectP.access
where P.access =true and P.ready_to_read =true

A: update P.knowledge := “well known”

Note that while the condition of this rule checks the value
of two attributes, the rule is only triggered when the
“access” attribute changes. Theselectclause tells the AE
to only look for changes to “access”. Also, because this
rule only changes attribute values for the object (page) that
appears in the condition, the action has nowhere clause.

Example 3
Suppose that a concept becomes “ready_to_read” when all
its prerequisites are at least “known”. We can write a rule
to take this into account when a knowledge value changes:

C: select C1.knowledge
where C1.knowledge≥ “known”

A: update C2.ready_to_read :=true
where prerequisite(C1, C2) and

not exists(selectC3

where prerequisite(C3, C2) and
C3.knowledge < “known”)

It means that when C1.knowledge has been changed to
“known” (or “well known”), all the concepts for which C1
is a prerequisite are verified, and for each of them with no
more unsatisfied prerequisites the ready_to_read attribute is
set to ‘true’.

Example 4
As another example let us consider the effect of an “inhibit”
relationship that gets activated when a concept becomes
“well known”.

C: selectC1.knowledge
where C1.knowledge = “well known”

A: update C2.ready_to_read :=false
where inhibit(C1, C2)

Examples 3 and 4 together already show some of the
potential problems with adaptation rules in general: if we
allow the arbitrary creation of prerequisite and inhibit
relationships and apply these adaptation rules it is possible
that two rules are triggered at the same time, one of which
tries to set “ready_to_read” to true while the other one tries
to set “ready_to_read” to false, for the same concept. Later
in this paper we describe how to detect such conflicts.

Users of Storyspace (see www.eastgate.com) will recognize
these potential problems: the use ofguard fieldsis in fact
equivalent to the use ofspecificadaptation rules. Links can
become available depending on which nodes the user
accessedor did not accessbefore. As an author one has to
be careful to not disable access to part of the application for
some users (unintentionally).

Execution model for AHAM-CA rules
In the previous subsections we presented (part of) the
syntax used in the specification of rules, and gave some
examples. To determine the actual behavior of the AHS we
must describe how theadaptation engineactually selects
and executes theadaptation rules. We call this the
execution model.

In order to reduce the complexity of the analysis of the rule
execution (and at the same time enable optimization of the
execution itself) we distinguish a number ofphasesin
which rules are executed that have a different purpose.
First the adaptive engine AE is started as a result of some
user action, e.g. when the user “clicks” on a link. The AE
has to perform a series of tasks (sequentially). DM and UM
are loaded, and the volatile attributes are initialized through
a set of rules (“initialize user model” or IU). Then a set of
rules will be executed to select the page(s) to display and
the fragments to include in that page(s) (phase PS). Another
set of rules is used toupdate theuser model (UU). Yet
another set of rules determineshowthings will be presented
(e.g. link colors, verbose or terse text, plain or grayed out,
etc.). We call this phasegenerateadaptation (GA). The
partitioning of rules into these sets and the sequential
execution of these sets of rules can be realized through the
association of rules with apriority. The AE will start by
executing rules in IU, which must have the highest priority.
Rules in PS come later by giving them a lower priority, and
by making sure that these rules do not cause rules from IU
to be executed again. Rules from UU and then GA have a
still lower priority. (It is easy to write conditions to ensure
that rules never trigger a rule from a previously completed
phase. In the sequel we will limit ourselves to rules within
a single phase and not worry about accidentally invoking
rules from another phase.)

As the examples in the previous section already indicate we
need to assume that a user’s action induces an update that
sets the rule execution in motion. The examples use a

(Boolean)attribute “access” for this purpose. Every rule
that has P.access in itsselectclause will be triggered by a
change in the accessattribute of a concept (most likely a
page). (A specific rule that uses p.access is triggered when
the specific page p is accessed.) The condition (where)
ensures that the rule is only executed when p.access
becomes true. The triggered rule(s) will perform updates to
attributes of some concepts, thereby triggering other rules,
etc. (Note that some rule in a later phase needs to change
“access” back to false to ensure that the next access to page
p is registered again.)

It is all too easy to define sets of rules that trigger each
other indefinitely and thus cause infinite loops in the AE. It
is clear that some restrictions are needed to prevent such
undesired effects. We first describe some “common sense”
constraints that each rule system for AHS should observe:

• The propagation of updates to attribute values within a
single concept is not allowed, except when one of the
attributes is an “event” attribute such as “access”. So
when p.access becomes true, a rule may set p.read to
true and p.knowledge to “well-known”. There is no
need to have a rule that is triggered by a change to an
attribute like p.knowledge and that updates p.read
(because the event that generates the update to
p.knowledge can update p.read as well). This
constraint eliminates rule sets that generate infinite
loops of updates to attributes of a single concept.

• The propagation of updates (to attribute values) from
one concept to another in agenericrule is only allowed
when one of thewhere clauses of the rule contains a
relationship between these concepts. A rule that does
not satisfy this constraint does not make sense because
it would specify arbitrary propagation of updates
between unrelated concepts.

It is clear that while the above constraints eliminate certain
meaningless rule sets, infinite loops in the rule execution
are still possible when there are cycles in the relationships
that are used in the adaptation rules. For some common
types of relationships, such asprerequisiteswe can require
that they do not have cycles. (Forlink relationships we
should not enforce this restriction but fortunately links
seldom play a role in adaptation rules.) But even when
there are no cycles when considering relationships of one
type, the interaction between concept relationships of
different types may still result in infinite loops. Cycles can
also always occur with sets ofspecific concept
relationships. In the section onterminationwe show how
to detect possible infinite loops in general.

The AE needs toinstantiatethe generic rules before it can
apply them. When a generic rule says that “when a page P
is accessed P.read is set to true”, the AE will actually use a
rule for each page p, saying that when page p is accessed
p.read becomes true. Also, when a condition contains a
concept relationship, the actual instance of the relationship
is used to make the rule specific. For instance, let c1 be a
concept and let c1 be an inhibitor for c2 and c3 (i.e. the
relationships inhibit(c1, c2) and inhibit(c1, c3) exist). The

rule in example 4 is then instantiated to:

C: selectc1.knowledge
where c1.knowledge = “well known”

A: update c2.ready_to_read :=false ;
c3.ready_to_read :=false

The instantiation of generic rules makes it easy to detect the
presence of specific rules that are in conflict with some
generic rule. The instantiation of the generic rule for the
objects that appear in the specific rule is then discarded.

The following pre-process translates a set of generic and
specific rules to a set of instantiated rules (Ins_rules).

1) Instantiate all generic rules and add to Ins_rules;
2) For each specific rule override (remove) an instance of

a generic rule if both following conditions hold:
• their conditions are logically equivalent;
• the sets of attributes that appear in the <list-

assign> of action statements are equal.
3) After instantiating all generic rules to specific rules,

merge syntactically equivalent rules into one rule.

Note that while conflicting (single) generic and specific
rules can be detected, there may still be conflicts that only
become apparent when one looks at sequences of rules.

The semantics associated with (instantiated) adaptation
rules is as follows: for every rule C→A, let Cold be the set
of selected attributes (actually attribute values) of objects
for which condition C was true before the event that
activated AE. (Initially, when a user model is created for a
new user, Cold = ∅ for all rules.) For most rules Cold

contains 0 or 1 elements because of our instantiation
mechanism. For instance, in Example 2 each instantiated
rule corresponds to the access of a single page (which is
either true or false), and in Examples 3 and 4 each
instantiated rule corresponds to the knowledge value for a
single concept. Let Cnew be the set of selected attributes of
objects for which condition C is true at some point in time
during the rule execution process. Again, in most cases
Cnew will contain 0 or 1 elements.) The rule becomes
active, i.e. it can be executed, when Cnew−Cold ≠ ∅. More
than one rule may become active at once. Most adaptive
engines will work sequentially and pick one of the active
rules to be executed. Apart from its use to partition the rule
set into differentphases, we can also use priorities to
indicate which rule to execute whenever several rules are
active. When a rule is executed, the new state (of UM) is
used to recalculate Cold for that rule. (Otherwise a rule
would remain active and fire again and again.) Cold remains
the same for all other rules, but for some rules Cnew may
change. This may cause someinactive rules to become
active (now having Cnew−Cold ≠ ∅) and someactive rules
(not yet executed) to becomeinactive again (now having
Cnew−Cold = ∅). Rule processing continues until for all
rules C→A the set Cnew−Cold = ∅, or in other words until
there are no moreactiverules.

The rule execution procedure described above only gives a
conceptualview of what goes on in the AE. An actual AE

will use an optimizer to eliminate the repeated evaluation of
rule conditions (calculating Cnew) that our description might
suggest.

TERMINATION AND CONFLUENCE
The partitioning of rules into differentphasesreduces the
practical problem of verifying that the rule execution is
“well behaved” but theoretically the problem remains just
as hard: the rule execution (within a phase) may not
terminate, or if it does it may not always produce the same
result. These problems are generally calledterminationand
confluence. They have been studied in a number of fields,
including automata, term rewriting and active databases.
We base our analysis on the research in active databases1.
In that research the analysis can only use the database
scheme. We can obtain more precise results because we
perform our analysis oninstantiated rules, thus on a
“database” in which part of theinstanceis known (namely
the domain model, and the concepts that occur in the user
model). Our analysis is also simpler because we only need
to consider modifications (no insertions or deletions).

The following example shows how easily rules can trigger
each other indefinitely:

C: selectC1.attr
where C1.attr > 0

A: update C1.attr := C1.attr + 1

It is clear that once the condition of this rule becomes true
the rule will trigger itself indefinitely. Fortunately cases
like this are very easy to detect.

The detection of infinite loops becomes more difficult when
concept relationships are involved:

C: selectC1.attr
where C1.attr > 0

A: update C2.attr := C2.attr + 1
where rel(C1, C2)

Here an infinite loop occurs only when there are cycles in
the relationship “rel”. Because we base our analysis on
instantiatedrules we can actually detect such cycles and
thus detect such potential infinite loops.

Although in this example the cyclic nature of a single
relationship type causes the infinite loop it is easy to come
up with examples in which a combination of relationship
types causes infinite loops, even though the relationships of
each type (separately) do not contain cycles. Again, such
cycles can be detected when using instantiated rules. We
can thus improve on thestatic analysispresented in [1,2]
for active databases. The analysis is calledstatic analysis

1 Because of lack of space we cannot discuss our choice in detail.
The translation of our rule system to the field of term rewriting
appears to be very complicated. The use of automata (where
nodes are represented by states and links by transitions) is not
straightforward in the case of conditional links, because these lead
to an explosion of the required number of states.

because it only looks at the database scheme, not the actual
instance. In our case we look at part of the instance
because we useinstantiated rules.

When the rule execution terminates, it is still possible that
the resulting UM depends on the order in which the
adaptation rules are executed. Indeed, the action of a rule
can perform updates thatactivateseveral other rules; one of
these is then executed and it maydeactivateother rules.
Should the AE make a different choice as to which active
rule to execute first the outcome of the whole rule
execution process could be different. When the outcome is
independent of the execution order the AHS is said to be
confluent.

Some AHS are created in such a way that termination and
confluence are always guaranteed. The AHA system [6]
for instance guarantees termination by only allowing the
propagation of monotonic updates and by only supporting
attributes with a finite value domain (integers between 0
and 100). When one would remove the restriction of
“monotonic updates only” termination would no longer be
guaranteed, but infinite loops could theoretically still be
detected because AHA has a finite state space. However,
even in this case the runtime detection of infinite loops
would be impractical because the finite state space is very
large. Therefore, even in such cases where one could in
theory detect violations of thetermination property at
runtime one will in practice use a static method such as the
methods we describe below.

We also show a static analysis method to predict problems
with confluence. However, as we shall see, confluence can
only be guaranteed under severe restrictions for the rules.
For the case where confluence is not guaranteed, the AE
needs to apply “tricks” to produce predictable results. A
common technique is to associate a priority to every rule,
concept, concept relationship and/or attribute. However,
arbitrary tricks tend to mask problems rather than solve
them. We therefore suggest to use executionphasesand
guarantee confluence within each phase.

Generating an Activation Graph
The interaction between adaptation rules is as follows:

Definition 1
Consider two rules ri : Ci → Ai and rj : Cj → Aj. Let Cj

old

denote the result of Cj the last time rj was evaluated during
rule processing and let Cj

old = ∅ if r j has never been evalu-
ated preciously (see our earlier description of semantics) .

• ri may activate rj if the execution of action Ai can
change UM from a state in which Cj

new − Cj
old = ∅ to a

state in which Cj
new − Cj

old ≠ ∅.
• ri may deactivaterj if the execution of action Ai can

change UM from a state in which Cj
new − Cj

old ≠ ∅ to a
state in which Cj

new − Cj
old = ∅.

Following and extending [2] we can describe the behavior
of the AHS by using anActivation Graph(AG). (We shall
look at the issue ofdeactivationlater.) In such a graph
nodes represent (instantiated) rules and edges indicate that
one rule mayactivatethe other rule. If there are no cycles
in the graph, then rule processing is guaranteed to
terminate. The difficulty in this analysis is how to decide
whether one rule can activate another rule, i.e. which edges
to add to the graph. We must guarantee that every possible
activation is represented as an edge in the graph. But we
must also try toonly include edges when this activation is
really possible (for some instance of UM).

In [2] a propagation algorithm(PA) is described that
decides when to include an edge ri→rj in AG. It does so for
so calledactive databases. The main difference between
AHS as described in AHAM and active databases as
described in [1,2] is that in AHS we only haveupdatesto
the user model (noinsertions or deletionsof concepts).
Furthermore, these updates are much more specific because
we useinstantiatedrules. (We use the actual instance of
DM.) Another difference is that in active databases many
different possible (initial) updates must be considered
whereas in an AHS the rule execution starts after a very
specific type of update that represents a user generated
event like clicking on a link anchor. Below we first
describe the general propagation algorithm. Then we show
how the algorithm can be improved for the use with AHS.

The basic PA described in [2] uses the action of ri (say Ai)
and the condition of rj (say Cj) to decide whether ri may
activate rj. The PA of [2] does this by combining the
relational algebra expressions of Ai and Cj. Through
syntactic analysis of these expressions one can determine
whether the update of Ai influences the result of the query
in Cj. Because of the use of instantiated rules in AHAM we
can easily decide which attributes of which objects may be
updated by Ai because they appear in the assignments in
<list_assign>, and which (instantiated) rules have a
condition that uses these attributes of one or more of these
objects (because these appear in thewhere clause of the
condition). As an example it is easy to see that the action
of the rule in Example 2 can result in the condition of the
rule in Example 3 becoming truefor the same concept.
Accessing one page may “generate” the last bit of required
prerequisite knowledge for another concept.

In order to ensure that every possible rule activation is
represented by an edge in the activation graph the basic
version of PA includes ri→rj in the graph when Ai contains
an assignment to an attribute of a concept that appears in Cj.
This approach is conservative in a number of ways: the
update may be conditional (as in Example 3); Ai may set
an attribute value without actually changing it; and even
when Ai changes an attribute value that is use in Cj it may
not change Cj

new − Cj
old.

There are a number of ways in which the basic PA can be
improved, while remaining conservative:

1. Properties from the value domains of attributes can be
used to determine that an update changes the value to
something that the condition can accept. If Ai sets a
knowledge attribute to “not known” and Cj checks for
knowledge ≥ “known”, we know that ri will not
activate rj. (This cannot be done in general, but for
many domains this is easy, e.g. for integers with simple
expressions and for enumerated types.)

2. In [2] it is already remarked that we can also include Ci

in the process: when action Ai is executed it must be
executed in a situation in which Ci was satisfied. This
can possibly provide some information needed to see
whether Cj will be satisfied after executing Ai.

3. Since we know the “event” that starts the AE we can
start the construction of the activation graph at the
concept with the initial “event”, e.g. the concept for
which the “access” attribute becomes true. We can
thus improve on the above step by taking into account
all the conditions of the rules on a path from the rule
that is triggered first to the rules ri and rj for which we
are investigating the possible activation.

4. A final improvement can be obtained by constructing a
separate activation graph for each possible “event” that
starts the AE. Indeed, for every link anchor we can
construct an activation graph that represents the
possible rule executions that are a consequence of a
user clicking on that link anchor.

Termination analysis of CA rules
Recall the mechanism for rule processing of CA rules. The
semantics of CA rules are such that, after each execution of
a rule r, r becomes active again only if new attribute values
for objects make the condition become true (i.e. Cnew− Cold

≠ ∅). TheActivation Graphconstructed by PA contains an
edge ri→rj if A i may add elements to Cj

new. The basic PA is
conservative because it assumes Cj

old = ∅. (Some of the
optimizations may detect the guaranteed presence of
elements in Cj

old.) The PA also assumes that when the
assignments in Ai canmake Cj

new − Cj
old become non-empty

theydo. Therefore the following holds:

Theorem 1:
If there are no cycles in AG then the rule execution for the
given adaptation AM is guaranteed to terminate.

Confluence analysis of CA rules
Assume that rule execution terminates, i.e. there are no
cycles in the Activation Graph. We wish to determine if
every possible rule execution, given the same input event,
DM and UM, is guaranteed to have only one final state.

If we look at the basic (unoptimized) PA, we see that it
creates edges ri→rj for each pair of rules such that Ai

assigns values to attribute of objects that appear in Cj. The
effect of Ai can be theactivation of rj as well as the
deactivationof rj. AG as obtained through the basic PA is
thus anActivation Graphas well as aDeactivation Graph
(say DG). By using different heuristics than for AG we can
obtain an optimized PA for constructing DG.

Definition 2:
Consider two rules ri : Ci → Ai and rj : Cj → Aj. The actions
Ai and Aj commuteif, for all possible instances of UM, the
execution of Ai followed by Aj and the execution of Aj
followed by Ai produce the same new instance of UM.

Lemma 1: [2]
Two distinct rules ri and rj commute if: (1) ri cannot activate
rj; (2) ri cannot deactivate rj; (3) condition (1) and (2) with i
and j reversed; (4) ri’s action and rj’s action commute.

To guarantee the commutativity of two rules ri and rj, we
need to verify the conditions (1)-(4) in the above lemma.
Condition (1) can be seen from theActivation Graph: an
edge ri→rj indicates that ri may activate rj. Condition (2)
can be seen from the (very similar)Deactivation Graph.
For condition (3) we only reverse the role of i and j. For
condition (4) we (conservatively) check whether Ai and Aj

do not assign values to the same (attributes of) objects.

The AE may have a choice between several (more than
two) active rules at any time. So there may be many
possible rule execution sequences. In [2] it is shown that:

Theorem 2:
A rule set R is confluent if all pairs of rules in R commute.

In [2] Baralis and Widom argue that this theorem cannot
really be improved upon: without any restriction on the
order in which rules are executed confluence can only be
guaranteed if all the rules that need to be executed are
activated by the initial event, and not by each other. Of
course, rules are allowed to activate rules that belong to a
later execution phase. Thus, the phases we introduced do
serve a purpose in guaranteeing confluence.

CONCLUSION AND FUTURE WORK
We have proposed an abstract rule (or trigger) language to
specify which adaptation and user modeling functionality
an AHS offers. We have described the semantics of rules
and how an adaptive engine executes the rules. We
characterize AHAM rules as Condition-Action rules and
used some results from [2] for analyzing termination and
confluence. Our analysis methods are less conservative
than those of [2] because we useinstantiatedrules (that use
the instance of thedomain model) andexecution phases.

In actual adaptive hypermedia systems authors will not
write all these rules by hand. An AHS will have part of the
adaptive behavior built in. We have made this behavior
explicit in order to provide a framework for comparing
different AHS (and possibly translating applications from
one AHS to another).

Our future work will consist of the creation of user-friendly
authoring tools (e.g. as an addition to the AHA system [6])
that let authors define how adaptation is to be done in their
system. Such authoring tools can offer support in the form
of analysis tools. The authoring environment can warn an
author when rule execution (during end-user browsing

activity) may not terminate or may generate unpredictable
results.

Acknowledgement
We wish to thank the anonymous reviewers for their helpful
suggestions and their requests for additional explanations
and examples.

REFERENCES
1. Aiken, A., Widom, J., Hellerstein, J.M. Static Analysis

Techniques for Predicting the Behavior of Database
Production Rules. ACM Transactions on Database
Systems, Vol. 20, nr. 1, pp. 3-41, 1995.

2. Baralis, E., Widom, J. An algebraic approach to static
analysis of active database rules. ACM Transactions on
Database Systems, Vol. 25, nr. 3, pp. 269-332, 2000.

3. Brusilovsky, P. Methods and Techniques of Adaptive
Hypermedia. User Modeling and User-Adapted
Interaction, 6, pp. 87-129, 1996. (Reprinted in Adaptive
Hypertext and Hypermedia, Kluwer Academic
Publishers, pp. 1-43, 1998.)

4. Baralis, E., Ceri, S., Paraboschi, S. ARACHNE: A tool
for the analysis of active rules. Proceedings of the
Second International Conference on Applications of
Databases, pp. 68-81, (Santa Clara, December1995).

5. Ceri, S., and Widom, J. Deriving production rules for
constant maintenance. Proceedings of the Sixteenth
International Conference on Very Large Data Bases,
Pages 566-577, (Brisbane, Australia, August 1990).

6. De Bra, P., Calvi, L. AHA! An open Adaptive
Hypermedia Architecture. The New Review of
Hypermedia and Multimedia, pp. 115-139, 1998.

7. De Bra, P., Houben, G.J., Wu, H. AHAM: A Dexter-
based Reference Model for Adaptive Hypermedia.
Proceedings of ACM Hypertext’99, pp. 147-156,
(Darmstadt, 1999).

8. Halasz, F., Schwartz, M. The Dexter Reference Model.
Proceedings of the NIST Hypertext Standardization
Workshop, pp. 95-133, 1990.

9. Halasz, F., Schwartz, M. The Dexter Hypertext
Reference Model. Communications of the ACM, Vol.
37, nr. 2, pp. 30-39, 1994.

10. Hothi, J., Hall, W. An Evaluation of Adapted
Hypermedia Techniques Using Static User Modeling.
Proceedings of the Second Workshop on Adaptive
Hypertext and Hypermedia, pp. 45-50, 1998.

11. Paton, N.W., Díaz, O. Active Database Systems. ACM
Computing Surveys, Vol. 31, nr. 1, pp. 63-103, 1999.

12. Wu, H., De Bra, P., Aerts, A., Houben, G.J. Adaptation
Control in Adaptive Hypermedia Systems, Proceedings
of the International Conference on Adaptive Hypermedia
and Adaptive Web-Based Systems, LNCS 1892, pp.
250-259, Springer Verlag, (Trento, Italy, August 2000).

