
H O R I Z O N T A L D E C O M P O S I T I O N S B A S E D

O N F U N C T I O N A L - D E P E N D E N C Y - S E T -

I M P L I C A T I O N S

P. De Bra*

Department of Mathematics
University of Antwerp, U.I.A.

Universiteitsplein 1, 2610 Antwerp

Belgium

*Research assistant of the N.F.W.O.

Abstract

A new approach towards horizontal decompositions in the Relational Database Model is

given. I t is based on partial implications between sets of functional dependencies. This

horizontal decomposition theory is especially useful for databases which must represent "real

world" situations, in which there always are exceptions to rather severe constraints like functioual
depe~encies {fd's).

The functional-dependency.set-implication (fsi) generalizes all previous work on horizontal

decompositions using partial implications between (single) fd's.

The exceptions to a set of fd's are formalized using another new constraint, the anti-functional.
dependency-set (afs}. The membership problem is solved for mixed fsi's and a~s', and a complete

set of inference rules is given. The inheritance problem, i.e. which dependencies hold in the (two)

subrelations generated by the horizontal decomposition) is shown to be solvable in polynomial

time.

§1 Introduction

The vertical decomposition of relations into projections of these relations, based on functional
dependencies (fd's), was introduced with the Relational Database Model by Codd [Col, and has

been exhaustively studied and generalized since. However, it relies on the assumption that the

part of the real world, represented by the database, satisfies some rather severe constraints.

Because this assumption is highly unrealistic some mechanism for handling exceptions to

these constraints is necessary. In [Del, De2,Pa, De3,De4,De5] a theory has been established

that uses a horizontal decomposition of relations into restrictions (often called selections) of these

relations, to put the "exceptions" in a well defined subrelation. This theory is based on "partial
implications" between functional dependencies, given different names in each paper, as the class

of fhese cons{rain,s became bigger and bigger.

In this paper we generalize the constraints of [De5] to include implications between sets of fd's

instead of single fd's. The new constraint is called a functional.dependency-set-implication [fsi}.
It means that if a (part of a) relation satisfies a set of fd's, then it must also satisfy some other

158

set of fd's, which is said to be implied by the first set. Note that this is an ad-hoc implication,

based on the observation of the real world, not just a "logical ~ deduction (which has been studied

e:~hanstively already lull).

The exceptions to a set of fd's are formalized using another new constraint: the anti-lunetional.
dependency-set (als), a generalization of the anti4unctional dependency (afd) of IDES].

In Section 2 we define the horizontal decomposition, based on fsi's. We also recall two

theoretical tools, that are used throughout the horizontal decomposition theory: the Armstrong
relation and the conflict concept. In Section 3 the membership problem is solved for mixed fsi's and

afs' and a complete set of inference rules is given. A complicated construction of a relation instance

,.'s recalled from [De5], which also leads to the solution of the inheritance problem in Section 4.

Both the membership and the inheritance problem are shown to be solvable in polynomial time.

We suppose the reader is aware of the basic definitions and notations of the Relational Database

theory lull.

§2 H o r i z o n t a l D e c o m p o s i t i o n s

The traditional vertical decomposition, based on lunctional dependencies (fd's), can only be

applied to relations in which some fd's hold. Since fd's are rather restrictive they do not occur

frequently in the "real world", at least not if no exceptions to any fd can be tolerated. For this

reason a large number of weaker constraints have been defined in literature lUll, which have a

bet ter chance of being satisfied, and which still lead to vertical decompositions. However, these

constraints are less natural and do not all have the theoretical simplicity of fd's.

In [De1,De2,Pa] a method for handling exceptions to fd's is presented, using horizontal

decompositions. The exceptions to an fd are put in a separate subrelation (obtained by taking

a restriction of the relation), inducing the fd in the remaining (and main) part of the relation.

Because the fd holds in this main part, it can be used to apply the classical vertical decomposition
to this part.

Although an fd may not hold in the real world, the part that satisfies the fd may satisfy some

other fd's too, which cannot be logically deduced from the first fd. Such "partial implications"

between fd's have been studied in [De3, De4, De5], and have been shown to lead to the same

horizontal decompositions as those of [De1, De2,Pa]. The drawback of all these horizontal

decompositions is that they generate an awful lot of subrelations, exponential in the number of
constraints.

In this paper we consider a more general class of constraints, using implications between sets

of fd's. This enables the database designer to combine several implications between fd's into one

implication between sets of fd's, reducing the number of constraints, and hence the number of
generated subrelations.

We first illustrate the horizontal decomposition with the following example:

E x a m p l e 2.1. Consider a large company with several divisions (e.g. factories) each having

(several) departments (each) treating one or more jobs. Employees work in one or more

departments (of one or more divisions). They have salaries and managers.

Although this may seem a rather unconstrained database, it may obviously obey the following
constraint:

159

If in a d/vision every department treats only one job, every employee has only one job and
every manager supervises only one job (for this division), then (the division is so large that) every

employee works in only one department and has only one salary, and every manager supervises

(employees} in only one department (for that division).

This constraint will be written as:

{div, dep--, job; div, emp --+ job; div, man ~ job} ~Y- { div, emp -~ dep, sal; div, man .-, dep }

Note that none of the fd's of the second {or "implied") set are logical consequences of the first

set of fd's. they are said to be implied by the first set of fd's by observing the real world.
[3

We now define this constraint, and the horizontal decomposition induced by it, more formally.

Def in i t ion 2.2. Let X be a set of attributes.

A set of tuples S in a relation instance is called X-complete iff the tuptes not belonging to S all

have other X-projections than those belonging to S. Formally, if tl E S, t2 ¢~ S then t~[X] # t2[X].
A set of tuples S is called X-ttniqtte iff all the tuples of S have the same X-projection. Formally,

if tl , t2 C S then t dX] = t2[X I.

Def in i t ion 2.3. Let Z be a set of attributes, jr l and 72 be sets of fd's, such that VX --* Y E

Ylu72:Z cX .

The Ignetional-dependeney.set-implieation (fsi) jr 1 z _]2, means that in every Z-complete set

of tuples (in every instance) in which all the fd's of Jr 1 hold, all the fd's f2 must hold too.

The sets of tuples which are both X-complete and X-unique play an important role in the

horizontal decomposition theory. In the sequel we shall use the term "X-value" to refer to such a

set of tuples, as well as for the X-projection of the tuples of that set,

The requirement that all "left hand sides" of the fd's of Jr1 and F2 must include Z is not a

severe restriction. In Section 5 we shall show that eliminating this.restriction does not necessarily

lead to a bigger class of constraints.

The Iunetional-dependeney-implieations (Idi's) of [De5] are special fsi's where ~'1 and ~ each

contain only one fd. Since all previously defined constraints of [Del, De2, Pa, De3, De4] are special

fdi's they are fsi's too.

In particular fd's can be expressed in many ways as fsi's, some of which are fdi's. X ~ Y is

equivalent to {X ---*X} ~ {X --, Y} for instance, which is an fdi (in fact even a "cfd" of [De3]).

But X ~ Y is also equivalent to i~ ~ {X--+ Y} for instance, which is not an fdi.

E x a m p l e 2.2. Consider the relation of Example 2.1. The horizontal decomposition separates the

divisions in which every employee, every department and every manager have only one job, from

the other divisions. If one assumes that most large divisions have enough work to distribute the

jobs in this way, a major part of the database may consist of information about such large divisions,

hence the exceptions to these fd's only have a minor influence on the cost of solving queries or

making updates. However, if no horizontal decomposition was applied to the database, the few

exceptions would have a great influence on the efficiency of the database system, since they would

prevent the classical vertical decomposition that speeds up the system and reduces redundancy.

The "user" need not know about this horizontal decomposition. If an update (in a "large"

division) causes one of the fd's (div, dep --, job; div, emp --~ job or div, man --* job) to be violated,

160

all tuples with that dlv-value are moved to the subrelation for the exceptions. If an update

causes the three fd's to become satisfied the tuples with that div-value have to move to the other

subrelation automatically. Hence the user need not know about the horizontal decomposition.

However, it may also be useful to let some users access the subrelations and some other users only

the "union". By doing this one can easily allow some users to create or remove exceptions, while

preventing other users from doing so.
[]

The restriction operator for separating the "large" divisions from the "small" ones is defined

as follows:

Def in i t ion 2.4. Let £ be a relation scheme, Z be a set of attributes, Y" a set of fd's such that

V X ~ Y e Y : Z C _ X .
For every instance R of R, the restriction for ~z of R, a~z (R}, is the largest Z-complete subset

(of tuples) of R in which all fd's of Y" hold.
The restriction for Yz of]£, ~z(]~), is a scheme .~z, (with the same attributes as .~,) of which

the instances are exactly the restrictions for Y'z of the instances of ~.

We require Z C_ X for all X ~ Y E Y" to make sure that X-values of R are not split up by

taking a restriction for ~rz.

Def in i t ion 2.5. The horizont=l decomposition of a sel~eme]~, aecoreling to the]si -'~z D z- ~r2, is the

couple (.t~1, ~2), where)~z = aTz(]~) and]~2 = ~ -]~z.

Note from Definition 2.5 that the horizontal decomposition of a scheme, according to Yl :~- ~r2

does not depend on ~'2, but it induces the ~'2 in P,,z- Hence one can always perform a horizontal

decomposition to generate a subrelation with a "desirable" set of fd's Y'I, by using the "trivial" fsi

In .~2, which contains the exceptions, for every X-value at least one of the fd's of Y'I must not

hold. In Example 2.1 this means that in such a division at least one department of employee or

manager must have more than one job. (In these divisions nothing is known about the number of

departments an employee or a manager works for, nor about an employee's salary).

The following constraint formalizes the notion of "exception".

Def in i t ion 2.6. Let jr be a set of fd's, such that VX--,Y E Y" : Z C X.
The anti-functional dependency set (afs) ~ means that in every nonempty Z-complete set of

tuples, in every instance, at least one fd of f does not hold.

The restric|ion for ~Z of R, a~z (R), is the largest Z-complete set of tuples in which ~Z holds.

The re~triction for ~Z of a scheme]~, a~z()~ } is the scheme of which the instances are the

restrictions for ~ of the instances of ~.

One can easily see that 2 - a ~ z (-~) = a~z (~), hence the horizontal decomposition of ~ according

to £ ~ Y2 is the couple of schemes (~F~(~) ,~{~)) .
The anti-f=nctional dependency (afd) introduced in [DES] is an afs ~Z for which Y" contains only

o n e fd.

From now on we let a relation scheme)~ have a set I of fsi's and a set ~ of afs'. (Note that I

also contains the fd's).

161

Having more than one fsi means that after the (horizontal) decomposition according to one fsi

of I one may want to decompose the (two) subrelations again, using some other fsi of 2.. Therefore

one must {first) determine which fsi's hold in these subrelations. This is described in Section 4.

Also, since decomposing a relation according to an fsi creates two subrelations which may sometimes

both be decomposed further on, one obtains an exponential number of final subrelations. Therefore

the designer must choose his fsi's carefully, putting many fd's in one fsi, to reduce the number of

subrelations. This is the main advantage of fsi's over fdi's IDES], in which all the fd's are treated

separately, leading to more fdi's, and hence exponentially more subrelations.

The presence of both fsPs and afs' in a relation scheme may induce a situation of "internal

conflict" between the fsi's and the afs'. The easiest example of conflict is an fd X ---, Y, which is a

special fsi, and the afd X ~f~ Y, which is a special afs.

Definition 2.7. A set Jr U ~4 of fsi's (2.) and afs' (~) is in conflict iff the empty set of tuples is the
only instance in which all dependencies of 2" O #~ hold.

In Section 3 the membership problem for mixed fsi's and afs' is reduced to the conflict concept,
which itself is reduced to the membership problem for fd's. So the conflict concept is an important
theoretical tool.

In the proofs of Sections 3 and 4 a special instance is used, which is an Armstrong relation for
fd's JAr, Del]. It has a special property, also satisfied by the "direct product construction" of [Fa],
but not by every (so called) Armstrong relation for fd's:

T h e o r e m 2.8. Let Arm(Y:) denote the Armstrong rclation lor a set jr of fd's far, Dell. In Arm(J r)
every fd, which is a consequence of f , holds, and for cuery other fd X -* Y, the ~correoponding ~
afd x ~ r hold, (tohich is a. a/4.

cJ

§3 T h e M e m b e r s h i p P r o b l e m f o r f s P s a n d a f s '

In this section we reduce the membership problem for fsi's and afs' to a sequence of membership
tests for fd's, for which many solutions are well known [Be, Ber].

We use the symbol ~ to denote the (logical) implication of a dependency by a set of
dependencies, and the symbol ~- to denote the deduction of a dependency from a set of dependencies
using the inference rules, given below. We shall prove the equivalence of ~ and t-, i.e. the
completeness of the inference rules.

We denote the set of all the fd's which are consequences of a set Y of fd's by ~r,. The set of all
fd's X --+ Y of ~r* for which Z ___ X is denoted by jr.z.

(FI) : if Y C.C. X then X -* Y.
(F2) : if X --* Y and V C_ W then .XW --, YV .
(F3) : if X ~ Y and Y ~ Z then X---, Z.

(r s t) : if 7"5 _ r~ *z and VX--, r ~ r~ : Z C X then ~I ~ a.

(FS2) : i f a ~ a a n d a D ~ - a t h e n f l D ~ - a O a .

(FS3) : if Y'x ~ Y'2 and Y'2 z jr~ then Y'I z f3.

(FS4) : if 3"1 2~- ~ and Z -~ Z I then Y'I *z' z ' 52,z I :3--

162

(FS5)

(FAI)

(FA2)
(FA3)
(FA4)

: if 1.1 holds and J'l ~ Y'~ then J'2 holds and if ~r2 holds and VX -* Y E ~ri U ~r~ : Z C X then

Y~ ~ ~2 holds.
: if Jrl :~- Y'2 and ~ Z then ~Z .

: if ~ z and VX --* Y G 3r2 : Z __ X then Jr l z Y'2.

: if ~ and Z --, g t then ~ z '

: if ~ z and 3rl *z _C ~ . z and VX --, Y E 5r2 : Z C_ X then ~ z -

As fd's are special fsi's the use of fd's in these rules is allowed.

representations of fd's as fsi's.

T h e o r e m 3.1. The rules F 1 . . . F3, F S I . . . FS5, FA1 . . . FA4 are soured.

In fact FS5 shows all

Proof. This is very similar to the proof for fdi's and afd's IDe5]. We give the proof for FA3 as an

example.

One can easily see that the fd Z -+ Z ~ means that every ZLcomplete set of tuples is also

Z-complete.

Suppose ~r~ff' does not hold. Hence in some ZLcomplete set of tuples S all fd's of ~r.Z' hold.

Since S is also Z-complete it remains to prove that all fd's of Jr hold in S,
Let X ~ Y E jr, then X Z t ~ Y E ~r.z'. Z ---* Z l and Z C X induce X -'+ X Z I by augmentation

(F2). By transitivity (F3) we infer that X---+ Y holds in S.
[]

The proof of the completeness of the inference rules consists of the following steps: first we

prove that FI...F3, FS1...FS5 are complete for the deduction of M's from a set of fsi's. Then

we show that they are also complete for the deduction of fsi's. From this proof one can easily

derive a membership algorithm for fsi's, which is essentially a sequence of M-membership tests.

Finally we prove that FI... F3, FSI... FS5, FAI... FA4 are complete for mixed fsi's and afs' by

reducing this problem to the membership problem for fsi's only.

Throughout the proofs of this and the next section, we use the following set of fd's:

Definition 3.2. FSATI(f) is the smallest possible set of M's, such that:

1. 7 C_ FSATI(~r).

2. If ~1 - FSATI(~} and ~, : ~ 4'2 e I then ~.~ C FSAT{f) .
3. If FSATt (7) = (FSATz(f))*.

[]

FSATI(Y) can be constructed starting from 7 and by repeatedly trying to satisfy 2) and 3)

of the definition. However, the construction will never be useful in a membership algorithm since

taking the closure (step 3) of a set of fd's is very costly. Fortunately one can quite easily construct

an efficient algorithm for verifying whether an fd is in FSATI(~r). A similar algorithm is given for

cfd's in the extended version of [De3].

Note that FSATI(F} = FSATIuF(~ . This equality will be used several times without further

notice.

L e m m a 3.3. F S A T ; (f) = {P.--*Q: I U .,~ ~ P---*Q}.

Proof. Consider Arm(FSAT;(7}}. By Definition 3.2 and Theorem 2.8 it is clear that I U f holds

in A r m (F S A T I (f)) . Hence all the M-consequences of I u f also hold. By Theorem 2.8 this

163

implies that all these fd's are in (FSATI(Jr))*. Step 3 of Definition 3.2 implies that these fd's are

in FSATx {jr).
The opposite inclusion is obvious from Definition 3.2.

rl

The above lemma shows how to detect whether an fd is a consequence of a set of fsi's.

L e m m a 3.4. FSATy{Jr) = {P ---, Q : I u jr F P ---+ Q}.

Proof. From Theorem 3.1 and Lemma 3.3 we know that: {P ---, Q : J u jr t- P --, Q} c FSATI(Jr).
For the opposite inclusion we show that the property, that all elements of FSATI(jr) can be

deduced from I U jr, remains valid throughout the construction of FSATI(jr }.
• I f P --* Q E jr then the property is trivial.

• If P --* Q is added to F S A T I (X , Y) in step 2 of Definition 3.2 then P --, Q E ~'2 for some

~l : ~ Yi~ E I . By induction all fd's of Jrll can be inferred from I U jr. Hence by rule FS5

I U jr t- ~ . Rule FS5 applied to ~2 and ~ ~L {p _._, Q} {holding by FS1) gives Jt.J jr ~- P --+ Q.

• If P ---) Q is added in step 3 of Definition 3.2 then it can be deduced from fd's for which the

property holds, by using F 1 . . . F3, which are the classical inference rules for fd's [u1 I. Hence

I u j r ~ - P ~ Q .

If one chooses jr = ~ then the following result becomes obvious:

C o r o l l a r y 3.5. F 1 . . . F 3 , FS1 . . . FS5 arc complete for the inference of fd's from a set of fsi's.
I-1

In the construction of F S A T I (~ only those fsi's Y~t :~- J~2 of Z are used {in step 2) for which

f ~ ~ , (and hence also I ~ jr/~).

This leads to the following lemma:

Lemma S.C. Let Xz = {~, ~L ~ , e X : X ~ Z~-- Z or X ~ ~,).
I ~ P--, q ilr xz ~ P--, o (for a,~y z).

r'l

In the sequel we will also need the following remark, which can be easily deduced from the

inference rules for fd's:

R e m a r k 3.7 If Z --* Z I and VX ---* Y E jr : Z C X then jr and jr,z' are equivalent
(i. e. jr, = (jr,z') *). In general however, (i! g 74 g') jr is more powerful than jr,z'.

D

The following lemma shows an important property of FSATIz (jr).

L e m m a 3 . 8 . Let Ig be as in Lemma $.6. Let Y be such that VX -+ Y E jr : Z c X .

II P -~Q e FSATIz(F} then I ~ P " * Q or I ~ e ~ z .

Proof. We prove that the property remains valid throughout the construction of FSATIz (jr).
• I f P --+ Q E Jr then P --+ Z is trivial.

• I f P --+ Q is added in step 2 of Definition 3.2 then P --+ Q E ~2 for some Y~l ~ " ~2 E Iz . There

are two possibilities {by the definition of Iz) : I ~ ~ or I ~ Zi -+ Z.

• If I ~ ~ then I ~ jr2 by FS5, hence obviously I ~ P -~ Q E Yi2.

164

• If I ~ Z~ -* Z then I ~ P --~ Z by augmentation (since Zi _C e if P --~ Q ~ ~,).

• If P -+ Q is added in step 3 then it is derived from other fd's (already in FSATIz(7)) by
reflexivity, augmentation or transitivity lUll.
• If Q C P then P ~ Q is trivial.

• If P = P~P", Q = Q,~Q,", with P~ --, Q~ already in FSATIz(7) and Q" c_ p", then P -* Q or
P ~ Z is deduced from P~ --* Qt or P~ --* Z by augmentation.

• If P --~ O and 0 ~ Q already are in FSATzz (Y') then P -* Q or P ~ Z is deduced from P --* 0
or P - , Z and O ~ Q or O --* Z by transitivity.

[~

The following lemma partially solves the membership problem for fsi's:

L e m m a 3.9. Let]z be as in Lemma 3.6. Let 71 be such that VX--~ Y E 71 : Z C_ X, 72 such that
VX -~ Y e Y~ : g' C_ X, and let I ~ g' -~ g.

The~ Iz ~ & ~- 7{ z ig & C_ ESATIz(Y',).

Proof. If I z ~ .TI ~ 72 *z then obviously 7~ z C FSATIz(TI). Since I ~ Z'--* Z 7~ z is equivalent
to & by Remark 3.7. Hence also ~ C FSATiz(TI) by step 3 of Definition 3.2.

For the converse we proceed as in Lemma's 3.4 and 3.8, by proving that the property remains
valid throughout the construction of FSATIz(~rl).

• If Y'2 = ~ then rule FS1 gives 71 D ~" 7~ *z.

• If 72 is added to FSATIz(7) in step 2 of Definition 3.2 then 72 -- ~ for some ~, D z- ~ E Iz .
There are 2 possibilities (by the definition of .rz):

• If I ~ ~l then I z ~ ~1 by Lemma 3.6. Hence Iz ~ ~2 by rule FS5. Hence also Iz ~ ~ .z

since ~'2 induces ~ z . 71 :if-- ~ (holding by FS1) and ~ :if- 7~ z (a representation for fd's, by

FS5) induce 71 ~ ~ ;z = ~ ~ 7*z by rule FS3.

• If I ~ Zi ~ g then we have that 71 ~ - ~ . z by induction. Since Z~ ~ Z, Y~, ~ - ~2 induces

~Z :~ ~;z by FS4. Hence 71 ~ - ~;z = 71 ~ 72 *z.
• If 72 is added to FSATIz(71) in step 3 of Definition 3.2 then ~ _ 7* for some 7 that was a part

of FsArxz (z,) already.
From Lemma 3.8 we know that for all X -~ Y E 7 : I z [- X --~ Y or I z k X --* Z.

• I f / z F X ~ Y then Iz ~" X Z ~ r (by F2), hence Iz b 7[~- {XZ ---, Y} by FS3 on 7! ~

and ~ ~ XZ--, r (Fss).

• If Ig k X ~ Z then l z k 7, ~ - {XZ ~ Y} holds by induction (since XZ -.-, Y 6 {X ~ y},Z).

Let 7 ' = { X Z - . . , Y e ~ : l z ~ - X ~ Z o r I z k X ~ Y } , t h e n b y F S 2 I z k Y'l D ~- Jr I. One can

easily see that 7 *z = ~ rt*z (using F I . . . F3), hence Iz k 71 ~- 7 *z by FS3 on 71 ~" Y' and

~r, ~ 7, *z = 7*z (FS1). Hence by FS3 and FS1 one infers Iz ~" 71 :if- 72.
[3

From the proof of Lemma 3.9 one can see that:

Co ro l l a ry 3.10. Let J[z be as in Lemma 8.8, let 71 and 72 be such that VX --~ Y E 71 u 72, Z C X ,

the~ xz ~ 71 z & ill& c_ FSATxz(71).
[]

165

To complete the proof of the completeness of F I . . . F3, FS1. . . FS5 for fsi's it remains to show

that the fsi's of I - Iz have no influence on 2. ~ 9̀ 1 ~ - ~ . To prove this we need a complicated
construction of an instance, similar to that of [De51, which we shall also be needing to prove the
completeness for mixed fsi's and afs'. Therefore we include the properties of this instance, related

to afs', in the following lemma:

L e m m a 3.11. Let I U ~ be not in conflict. Let I z be a8 in Zemma 8.6. Let ~z = {~z,. 6 ~ : I

z~-~ z}. zet Iz u ~z ~ 9̀L ~ ~2 (or let 2.z V ~z ~ ~z) .
Then me can construct an instance in which I U ,4 holds bug in which f l ~ - 5 (resp. ~ g)

does not hold.

Proof. Suppose IzU ~z ~ 9 ,̀ ~ - 5r2. We shall see later that in R1 = Arm(FSATZz(£)) ~z holds.
By Lemma 3.9 f2 ~Z FSATIz(Y:I), hence 9"2 does not hold in RI. From Theorem 2.8 we can easily

deduce that this means that for some X ---, Y 6 9"z X / / ~ Y holds in Rt, hence X ~-~ Y holds (by
F I and FA3). We also know (from rule FA2) that ~ z cannot hold in R1.

In Rl a number of fsi's of I - / Z and a number of afs' of ~ - ~g may not hold. This will be

solved by "adding" copies of S = Arm(FSATI(@)). In S I u ~ holds, as one can easily see.

Let some ~1 ~ ~2 6 2" - 2"z not hold in Rl. Then (Theorem 2.8) all fd's of Y}l hold and some

fd's of ~2 do not hold. Since Y}I ::~ Y}~ ¢ 2"z for some fd T --, U e }}1 : / ~ T -+ U.
Let the values that occur in S be renamed such that they all become different from the values of

R1, except that for some tl 6 R,, t2 • S : t,[Z--/] = t2[Z--~, where ~ = {attribute A : 2" ~ Z e t A } .
The "modified" union of R, and S satisfies the following properties:

• In R, U S 2"z still holds: let ~1 ::~ 9"]2 • 2.z not hold. Then there are two cases:
• either 2" ~ ~.~, hence I ~ ~'2 by FS5, and if Y} 2 no longer holds then 3a, • RI, 3s2 • S, 3T] --+

U / • 9"/~: s,[T/] = sz[T/] and sl[Ui] # sz[U/], and hence T / C -~i and a,[Ti] = 82[t5] = hIT]l,
but then also U] __C. ~ since .2" ~ T/---, U/, hence s1[U/l = sz[U/] = t,[Uj], a contradiction.

• or 2. ~ Zi ---* Z, but then T] _ Z-'~ (which holds for some T/--* U] • ~'2 that does not hold in

R, U S} and Z/--+ Z would induce Z _ Z"~, a contradiction with Y~ :~ Y~2 ¢ Iz.

• In RI u S #~z still holds since it is impossible to violate an afs by taking a union of two instances

in which that afs holds.

• In Ri U S every fsi of 2. - 2"z and every afs of ~ - ~z which already holds in R~ (and also in
S of course) still holds. For the afs' the reason is the same as for those of ~z. For the fsi's we

have that if 9"k~ :~- 9"k~ • 2" - 2"Z holds in Rl then ~ , z, holds in R, and S, and such an afs is

not violated by the union. FA2 shows that this afs implies 9"/q :~- 9"k~.
• In R~ U S ~ z still does not hold, since it does not hold in R~ and since (as explained above) RI

and Rz do not "share" a common Z-value which could influence ~ z in R~ (otherwise Z C Z'~}.
• In R, u S ~¢z may no longer hold, because it may not hold in S. But in the "R,-part" of

RI U S 9"z still holds, since R1 and S do not share a Z-value (and hence also no T-value for any
T-+ U e lz).

• But in R 1 U S the number of Zi-values for which all X¢. --, l~, • ~ hold (and for which some
T¢, --~ Ui. • 9"~ does not hold) is decreased by one, since the Zi-vMue containing tl collapses with
the Zi-value of S, containing t2, (in which ~,z; holds), and since S has no Z~-values for which

all Xi , "-, I~. • ~ hold.

166

By repeating the above construction for all other Zi-values for which ~ holds one can generate

a relation in which jrfi ~ ~ , holds (since ~, K' holds).

By then repeating the above construction for all fsi's of I - I z which do not hold in

Arm(FSATiz(jrl)) one generates a relation in which I holds (and jrl :~- ~ still does not hold).

For the afs' of ~q - ~qz the construction proceeds in a similar way.
If I z O ~qz ~: ~ then we shall see later that in Arm(FSATIz (7)) ~qz holds, as well as I z O {jr}.

The same construction as above leads to an instance in which I u ~ holds, and in which

does not hold.
n

T h e o r e m 3.12. F 1 . . . F3, FS1... FS5 are complete for fdi'*.

Furthermore, let jrl and jrz be s=eh that VX --0 Y • ~r 2 U jr2 : Z C_ X, then I k jrl =~- jr2 iff
& C_ FSATzz(£).

Proof. If I ~ £ ~ £ then by Lemma 3.11 Iz ~ jri ~- £ . Lemma 3.9 yields £ • FSATIz(~I),

while Corollary 3.10 implies I z k jri :~" jr2.

The converse is trivial.
[]

Before we prove the completeness of our rules for mixed fsi's and afs', we take a closer look at

the conflict concept.

L e m m a 3.13. I O ~q is in conflict iff for #ome ~Z E ~ I ~ jr holds.

Proof. The if-part is trivial.

For the only-if-part consider Arm(FSATI(~)). In Arrn(FSATI(~)) I holds, hence if Z U ,4

is in conflict some ~ • ~ does not hold. If for some fd X -~ Y • jr X -* Y does not hold in

Arm(FSATI(~) then by Theorem 2.8 X ~ Y must hold. With rules FSI, FA3 and FA4 one can

easily deduce that X ~ Y induces ~ . Hence for no X -+ Y • Y X / / ~ Y can hold. Theorem 2.8

then induces that for all X --* Y • jr X --* Y holds, hence jr holds and must be a consequence of

FSATI(~ . Step 3 of Definition 3.2 implies that jr C FSATI(~ , ~ , hence I ~ ~r by Lemma 3.3.
[]

L e m m a 3.14. Let I U ~ be not in conflict.
~ u ~ ~ i ~ z u ~ ~.

Proof. The if-part is trivial.

For the only-if-part, suppose Iz U ~qz V ~',. We first show that Iz u ~qz ~ ~ .
Suppose Iz u ~z ~ ~ , hence I z U ~z U Y is clearly in conflict. Then in Arm(FSATZz(Y)) for

some afs ~ of Az jr' holds (by Lemma 3.13 and Theorem 2.8). Hence (Theorem 2.8) I z u jr ~ Y'.

Since Zz ~ V --+ Z Lemma 3.9 yields Iz ~ I :if-- jrl*z.

~, induces ~ , z by rule FA3. Rule FA1 (with jr D~_ jr, ,z induces ~ , a contradiction with

Zzu.% V~.
Hence !z U ~z ~ ~ and ~z holds in Arm(FSATIz(f)) (this was used in Lemma 3.11,

considering that FA2 deduces Y'l gDg- jr2 from ~tz. Lemma 3.11 then says that there exists an

instance in which I U ~ holds and in which ~ does not hold. Hence 1 u ~q ~ ~ . []

167

Lemrna 3.15 Let I O ~q be not in conflict.
g

Proof. The if part is trivial (using FA2 if ! z O Jlz F ~z) -

For the only-if-part, assume that arz [/Jr1 :ff_z Jr2 and arz 13 ~qZ V ~Z- By the proof of Lemma

3.14 Iz O Az ~ ~ z . Hence by Lemma 3.11 there exists an instance in which I O ,q holds and in

which 3rl ~ Jr 2 does not hold. Hence I O A ~ Jr 1 z Y2-
[]

The above lemmas prove:

T h e o r e m 3.16 F1 . . . F3, FS1 . . . FS5 and FA1. . . FA4 are complete for mizcd fsi's and afs'.

The following property shows how to solve the membership problem (and is easy to prove):

Coro l l a ry 3.17 Let I o ~I be not in conflict.

Let ! z = {.ri, :~- Jrl 2 • I : ~t C_ FSATx(¢t) or Z¢---* Z • F S A T I (~ } .

Let -'qz = {~'v,,. e 11: Vi---* Z • FSATI(¢f)}.

! o ~q ~ ifffor some afs~'v, of,~Z we have 7' C_ FSATIz(Y) .

I U ~ ~ F1 ~-- £ i f f l U ~q ~ Y~Z or £ e FSATXz(£).

[]

[]

Using Corollary 3.17 and a membership test for FSAT, a polynomial time membership

algorithm for mixed fsi's and afs' can be easily constructed. The major factor in the time complexity
is the calculation of .rz and ~Iz.

§4 T h e I n h e r i t a n c e o f D e p e n d e n c i e s

In Example 2.1 the relation scheme contains only one fsi. In general however a scheme may have
several fsi's and ass'. So after decomposing it according to one of its fsi's, we want to decompose
the subschemes further on, using other fsi's. But not all fsi's (and afs') still hold in the subsehemes.
In this section we describe how to decide which dependencies hold in the subschemes. This is called
the inheritance problem.

N o t a t i o n 4.1. In the sequel we always treat the horizontal decomposition of a scheme /~, with
z

fsi's I and afs' Jl, according to fl :3- Jr2 E I , into the subsehemes)~1 = aylz(/~) with fsi's I i and
afs' $1, and)~2 = a~iz(R) with fsi 's/2 and afs' ~2- We assume that a r O A is not in conflict, and
also that I O ~1 ~ jr 1 and I o Jl ~ ~ z (otherwise/~1 resp. £2 would always be empty). We only
require I1 O ~1 and/213 ~2 to be generating for the sets of all dependencies which hold in)~x and

R e m a r k 4.2. Since fd's cannot be violated by taking a restriction, all the fd's which hold in]~
also hold in l~l and]d2.

[]

168

The following inclusions are easy to prove:

L e m m a 4.3.
Z' Z'

I , c { 1 - / ~ 1-~: ~ u ~ u 1-, ~ 1-? D- 1-~}.
Z'

z~ c {1-I ~ g : z u ~ u ~ z I= 1-~ :>- g}.

/ , c {~, : z u / u.~z 1= ~,}.

T h e o r e m 4.4. An lsi or dis must hold i~ R, {resp.]~2) iff it is a consequence ol Iz U ~z U 1"1

(rev. Iz u ~z u ~z).

Proof. From Lemma 4.3 it follows that (I z U ~Z U &)* C_ (I1 U ~1)* C_ (I U .,~ U &)* and also that
(Yz u ~z U ~lz)* C (Is u ~2)* __ (I u ~ U ~z)* , where * means the "closure" operator, i.e. taking

all the consequences of a set of dependencies (as we already did for fd's in Section 3). We prove

that the first inclusions are equalities.
Let ! U ~ u 71 ~ ~ , but Iz u ~z u 7~ ~: ~ , . We prove that ~ does not hold in ~I .

I z U/[z U 1'1 ~: ~ , implies that I z U dz u 71 u 1-~ is not in conflict, by the proof of Lemma

3.14. By the proof of Lemma 3.11 one can construct an instance R in which I u ~ holds but in

which ~ , does not hold. One starts with Rl = Arm(FSATIzuT~ (l-t)) this time, and adds copies of

Arm(FSATI(~,]Z))) to obtain R. From the construction, used in the proof of Lemma 3.11 one can

easily see that R1 = a~z(R), since the copies of Arm(FSATI(f~, ~) have/~lz and have different

Z-values than those occurring in R1- Hence we obtain an instance in which I U ~ holds, and such

that]~.~, does not hold in RI. Hence ~ , ¢ (/ , u ~l)*-
The proof of the other three cases (an fsi in R,, an afs in R2 and an fsi in R2) is similar and

therefore left to the reader.
I:]

From Theorem 4.4 one can easily deduce an algorithm which calculates the inherited

dependencies in the same time as a membership algorithm.

A decomposition algorithm can be easily constructed for the following normal form:

Def ln l t lon 4.8. A scheme £ is said to be in FSI.Normal Form, (FSINF} iff for all fsi's t'1 ~ 1'2

of I either 1'1 or ~ z holds in)~.
A decomposition {)~1,.-., .~n} is in FSINF iff all the £1,i = 1 . . . n are in FSINF.

Note that in the "final" subschemes there are no "real" fsi's any more, only fd's and afs'.

Note also that if only fdi's are given, (i. e. 1'1 and f2 each contain only one fd) then the

decomposition algorithm generates a decomposition into the FDI-Normal Form of [De5]. If the fdi

is trivial (i. e. the "left" fd is trivial) then the decomposition algorithm generates a decomposition

into the Clean Normal Form of IDe2]. If all trivial fdi's are explicitly said to be inherited (from I

to I1 and I2) then we obtain the decomposition into the Inherited Normal Form of IDe2].

169

§5 Possible extensions

The fsi's ~rl ~ ~r 2 still have a rather severe restriction: VX -* Y • Jrl U F.2 : Z C X. In

this section we shall show how far this restriction can be removed, without seriously affecting the

semantics of the constraint.

If one changes the restriction to X ---+ Z instead of Z _ X, one can easily prove the following

remark:

R e m a r k 5.1 Let ~ heap. Y:2)= {X'---* Y : X ' = X Z and X ~ Y e f i (resp. ~r2)}.

The fsi f~ ~ - F~ plus the set of all fd's X Z ~ Y : X --* Y • £ u • are equivalent to the

"generalized" fsi £ :~- £ .
D

One cannot remove the restriction that X--* Z must hold as well. The class of constraints would

certainly become bigger, but in the subrelation Rh generated by the "generalized" fsi Yl ~ 72

the set of fd's 71 does not hold any more, as one can easily see from the following example:

Suppose we have the "unconstrained" fsi Ernp ~ Job ~-~ Emp --~ Sal, Man, meaning that if

an employee has only one job in some department, then he has only one salary and one manager

for that department. There is something peculiar about this constraint: if for two departments the

constraint holds, then (since the two departments together form a Dep-complete set of tuples) every

employee who works in both departments must have the same job, the same salary and the same

manager in both departments! To avoid this altered semantics one can change the definition of the

constraint, replacing the phrase "X-complete set" by "X-value" (i. e. X-complete and X-unique

set). The definition then becomes:

Def in i t ion 5.2 The "¢eneralized" Junctional-dependency-set.implication (gfsi) ~rl ~ - ~r2, means

that in every Z-unique, Z-complete set of tuples (in every instance) in which all the fd's of ~rl hold,

all the fd's of ~'2 must hold too.

There is no restriction on X any more. However one can easily prove that such a gfsi is again

equivalent to a normal fsi:

R e m a r k 5.3 Let 5/ (,eV. £)--- {X' -~ Y : X' = X Z and X -~ Y • 5~ {,eV. 5~) }.

The constraint from Example 2.1 now can be written as the gfsi

{dep-- job; 1oh; rob} {emp- dep, al; d p}

The meaning now reflects the formal description of the constraint more closely than in Example 2.1.

In future research a similar theory should be established for handling exceptions to other

constraints, such as multivalued dependencies or inclusion dependencies.

170

References

{Ar]

IBel

[Ber]

IcoI

[Dell

[De2]

[De3]

[De4]

[De5]

[Fa]

[Pal

[Vl]

Armstrong W., Dependency structures of database relationships, Proe. IFIP 7~, North
Holland, pp. 580-583, 1974.

Beeri C., Bernstein P.A., Computational Problems related to the Design of Normal Form
Relation Schemes, ACM TODS, vol. 4.1, pp. 30-59, 1979.

Berastein P.A., Normalization and Functional Dependencies in the Relational Database
Model, CSRG-60, 1975.

Codd E., Further normalizations of the database relational model, In Data Base Systems
{R. Rustin, ed.) Prentice Hall, N.J., pp. 33-64, 1972.

De Bra P., Paredaens J., The membership and the inheritance of functional and a~unctional
dependencies, Proc. of the Colloquium on Algebra, Combinatorics and Logic in Computer
Science, Gyor, Hungary.

De Bra P., Paredaens J , Horizontal Decompositions for Handling Exceptions to Functional
Dependencies, in "Advances in Database Theory", Voh II, pp. 123-144, 1983.

De Bra P., Paredaens J., Conditional Dependencies for Horizontal Decompositions, in
"Lecture Notes in Computer Science", Vol. 154, pp. 67-82, (10-th ICALP), Springer-Verlag,
1983.

De Bra P., Imposed-Functional Dependencies Inducing Horizontal Decompositions, in
"Lecture Notes in Computer Science", Vol. 194, pp. 158-170, (12-th ICALP), Springer-
Verlag, 1985.

De Bra P., Functional Dependency Implications, Inducing Horizontal Decompositions, UIA-
report 85-30, 1985.

Fagin R., Armstrong Databases, IBM RJ 34.~0, 1982.

Paredaens J., De Bra P., On Horizontal Decompositions, XP~-Congr, ss, State Univ. of
Pennsylvania, 1981.

Ullman J., Principles of Database Systems, Pitman, 1980.

