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Abstract

This paper describes a system for automated rail scheduling currently being de-
veloped at Dutch Rail (NS). This system will be used initially to base infrastructure
decisions upon. Rail infrastructure poses constraints upon the rail schedules that can
be made within it, because of the large extent in which trains share it. Good infras-
tructure is the one that allows good schedules. The Petri net based ExSpect editor is
used to model infrastructure variants and to help converting them into schedule con-
straints. With OR techniques, schedules are then made generated. ExSpect is then used
to simulate the execution of these schedules within their infrastructure.
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1 Introduction

ExSpect [HSV 89,ASPT 94] is a Petri net tool, language and method for the description,
analysis and simulation of distributed systems. It has been developed at Eindhoven Univer-
sity and is marketed by Bakkenist (BMC) in Amsterdam. Up to this moment, its practical
use has focused around infrastructure decisions of some kind. The infrastructure variants to
choose from are described in ExSpect and then simulated to see which one performs best.
This brought us into contact with Dutch Rail (NS).

1.1 Infrastructure within NS

As many urban areas in the world, Holland suffers from a transport problem. NS is using
its present infrastructure to and even beyond its limits, so investments are needed to remove
the present bottlenecks. Because of the long-term character of these investments, various
variants have to be compared, by analysis and simulation. However, trains do not arrive
and depart randomly, but according to schedules, which are influenced by the future in-
frastructure. This naturally leads to a system, wherein infrastructure is modeled, schedules
then are generated from it, and finally tested by simulation.

We describe briefly the assumptions underlying the schedules made within NS for testing
infrastructure. Each scheduled train has an identification and a kind. There are 4 train
kinds: intercity (IC), inter-regional (IR) and agglo-regio (AR) plus freight trains (G). Pas-
senger trains depart hourly; if e.g. an IR train with identification ‘32H’ departs at 11:15
from station ‘EHV’, a (probably different) train with the same identification and kind is
supposed to do so at 6:15 and another at 7:15 and so on. The granularity of these schedules
is 1 minute.

1.2 Structure of the paper

The present paper describes the DONS system, which we describe by means of the ExSpect
terminology. So the latter is briefly introduced to improve understanding. We terminate by
discussing the parts realized at present and experiences with it.

2 ExSpect

ExSpect is based on Petri nets with colour, time and hierarchy and can be compared to CPN
and the Design/CPN tool. Differences is that firing rules are not included in the graphical net
using pattern matching, but with Z-like precondition predicates and concurrent assignments.
Assignments may be conditional, which makes an atomic subnet (processor) in ExSpect to
a group of transitions having complementary preconditions for firing.

The hierarchy can be compared to transition substitution with place fusion. An ExSpect
subnet has virtual places or pins that can be fused or installed to real places (or again pins)
in the higher net. In installing, the names of the places or pins in the higher net must be
matched with the pin names in the subnet, just like one treats function calls in conventional
programming languages.

A third feature of ExSpect are stores, which are places that contain a single token throughout
their existence.

The following specification exhibits the flavour of ExSpect. We specify part of a telephone



network, servicing a set of subscribers. The subnet posesses a store containing the current
connections of its subscribers. A connection request is transferred if the requesting sub-
scriber has no current connection. If an answer for the connection request comes from the
network, then a connection request must be pending. The answer kind is determined and
reacted upon.

The described part is depicted as follows.

connrq_usr handle_crq connrq_net
©, —— ©

conns

O

connans

ringing

engaged handle_ca

The places with the inscriptions are input (i) or output (o) pins, the starred one is a store.
The handle_crq subnet is a processor without conditional assignments (i.e. a transition).
Its description is as follows.

proc handle_crq
[in u : CRQ, out n : CRR, store s : USR->CON |
pre not(snd(u) elt dom(s))]

n <- u, s <- addrq (s, u);

The pin u is connected to connrq_usr and n to connrqg_net, whereas s is connected to conns.
The functions not, elt and dom are standard functions representing negation, membership
and domain respectively. The function snd is specific to the telephone example, extracting
the sender (of type USR) from a connection request (of type CRQ). Another specific function
addrq updates the store. We also give the description of handle_ca. This processor has
conditional assignments and is in fact a small subnet containing two transitions.

proc handle_ca
[in a : CA, out r : USR, g : USR, store s : USR->CON |
pre isrequested (s.rcp(a)) ]

if isengaged(a) then g <- rcp(a) else r <- rcp(a) fi;

Of course, g is connected to engaged and r to ringing.

3 DONS

The DONS system supports the rail scheduling task. The diverse decisions that planners
make are recorded and transformed into constraints for a rail schedule. Then a rail schedule
is made satisfying those constraints. If a schedule is impossible, conflicting decisions are
reported, allowing the planner to revise them. Finally, a simulation component allows to
test generated schedules in more or less realistic circumstances. Below, the architecture of
the system is depicted.
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1. system DONS

The system consists of 3 editors: IFED (infrastructure), TED (tabular data) and CED
(temporal constraints), whose respective output is stored in IFLIB, TLIB and CLIB respec-
tively. IFED is a Petri-net based editor for rail nets. TED needs infrastructure to match
corresponding data against. CED needs the data to match the constraints against. The
IF2C transformer generates temporal constraints from infrastructure and tabular data. The
CSP program looks at the (temporal) constraints and either detects inconsistencies between
them that are reported to the planner or it establishes their consistency by generating a rail
schedule satisfying the constraints. The SIM program is Petri-net simulator that simulates
the generated schedule being followed in the infrastructure, measuring its stability against
disturbance.

3.1 Infra editor
The infrastructure editor is depicted below.
edit_infra
()
piim—— :
p(i\oyt

IFLIB

2. Rail infrastructure editor

The “piin” and “piout” places are for interaction with the planner. The infrastructure that
is specified by the editor has two levels.

On the lowest level nodes of the rail net are specified. Nodes connect various rail sections
by means of e.g. switches. The following example depicts a node (called TBA) where three
two-track sections meet. The “Win” connection splits into “Nout” and “Eout”, whereas
“Nin” and “Ein” are joined into “Win”. The “Ein-Wout” and “Win-Nout” paths have a
level crossing, so trains passing these paths have a conflict.
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3. Rail node TBA

This situation is translated into a hierarchical Petri subnet by joining connections by “path”
transitions if they are connected. These transitions share a conflict store if trains passing
the corresponding paths are in conflict.

4. Node TBA as Petri subnet

On the higher levels, nodes are connected by means of rail sections, which can have one
or two directions. A rail section is a place connecting two nodes. If the place is input for
the one and output for the other, it is an unidirectional section, if it is input/output for
both, it is bidirectional. The net below depicts a small part of the rail net in the vicinity of
Eindhoven (EHV), as it will be in the future.
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5. Rail net example

From Eindhoven, two sections lead to Boxtel (BTL). There they split; one goes to ’s Her-
togenbosch (HT'), the other to Tilburg (TB). There is also a section from HT to TB, which
joins with BTL-TB near TB in TBA (Tilburg Aansluiting). The TBA node is the one
specified above in detail. All sections have their return sections as well.



From TB a bidirectional section leads to Kaatsheuvel (KHL), where the famous tourist
attraction “de Efteling” is situated. The rest of the Dutch rail net (west of TB, north of
HT and south/east of EHV) is omitted. One could add connectors and go up the hierarchy
another level.

The nodes TBA and BTL can be unfolded to show the actual connections. Note the absence
of conflicts in the node BTL, due to a fly-over planned there.
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6. Rail net unfolded

Below is the future situation at the node BTL depicted with the fly-over.

6. Node BTL

3.2 Tabular data

The tabular data editor extends the infrastructure with tabular information. The same
infrastructure component can and will have several tabular data attached to it, so it is
modeled as a separate phase, although one and the same editor may be used throughout.
There are two different tabular data classes: timing information and line information.

IFLIB add_lines

)
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7. Tabular data editor

The timing information gives the minimum times for each train type for a group of rail
sections. This information is attached to places in a rail net, as in the following picture.
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8. Net extended with timing information

Also the minimum time needed for avoiding conflicts within nodes and rail stretches must
be specified. This time depends of the way the control systems are implemented; the default
is at present 3 minutes.

The line information gives the required hourly trains with their routes through the net. Two
hourly trains constitute a line, one in the forward and one in the backward direction. For
example, in the above net, the following lines could be specified.

htid kind route

3 1C EHV,BTL,TBA,TB

5 1C EHV .BTL,HT

6 1C EHV,.BTL,HT

31 IR EHV,.BTL,TBA,TB

37 IR HT,TBA,TB

38 IR HT,TBA,TB

413 AR EHV,BTL,TBA,TB,KHL
414 AR TB,KHL

431 AR EHV,BTLHT

The table is made by pointing at the successive nodes and is checked against the connection
information within the nodes. An hourly train is specified by extending a line with ‘H’
(Dutch: ‘Heen’) for the forward and ‘T’ (Dutch: ‘Terug’) for the backward direction.

3.3 Transformation

The infrastructure extended with tabular data is converted to temporal constraints. Tem-
poral constraints are built using variables denoting the arrival and departure times of trains
within nodes. From the information above, it can be e.g. deduced that 31H will cross TBA
6 minutes after crossing BTL (by default trains run at maximum speed; the possibility of
slowing down has to be added explicitly afterward). Also 413H will cross TBA 11 minutes
after crossing BTL. These constraints are denoted as follows.

31H:TBA - 31H:BTL IS 6
413H:TBA - 413H:BTL IS 11

Trains sharing the same rail section must be 3 minutes apart. Hence their departure and
arrival times must differ between 3 and 57 minutes modulo 60. Consequently, in our notation,

31H:BTL - 413H:BTL IN 3..57
31H:TBA - 413H:TBA IN 3..57.

Moreover, they cannot overtake one another, which can be formulated by disallowing some
event orders as follows.

NOT (ORDER (31H:BTL,413H:BTL,413H: TBA,31H:TBA))
NOT (ORDER (413H:BTL,31H:BTL,31H: TBA,413H:TBA))



Here ORDER(a, b, ¢, d) is an abbreviation for b IN a..c AND ¢ IN b..d AND d IN c..a.
For bidirectional sections, trains from different directions may not even cross. So

ORDER(413H:TB,413H:KHL,413T:KHL,413T:TB)
ORDER(413H:TB,413H:KHL,414T:KHL,414T:TB)
ORDER(414H:TB,414H:KHL,413T:KHL,413T:TB)
ORDER(414H:TB,414H:KHL,414T:KHL,414T: TB)

By the conflict in TBA, the crossing of trains in the TB-HT and BTL-TB directions must
be 3 minutes apart as well, giving e.g.

31H:TBA - 38T:TBA IN 3..57.

The consistency checking and transformation of infrastructure and added data into tempo-
ral constraints is performed by ASF4+SDF ([BHK 89],[HHKR 89]), an integrated language
development toolkit. An important feature is that the temporal constraints point back at
the planner decisions they were deduced from.

3.4 Constraint editing

The infrastructure constraints deduced above are not the only ones that a schedule must
satisfy. In a good schedule, trains for the same direction depart at regular intervals, for
example

413H:TB - 414H:TB IS 30.
413T:KHL - 414T:KHL IS 30.

Also some connections between trains must exist. The train to KHL should maybe connect
to the intercity EHV-TB in both directions. The time needed to change trains is judged to
be 4 minutes and 7 minutes is the maximum allowed for the connection. This would boil
down to the following constraints.

414H:TB - 3H:TB IN 4..7
3T:TB - 414T:TB IN 4..7

All these so-called marketing requirements are added using a (tabular) constraint editor. A
prototype editor is developed using the ASF4+SDF environment.

3.5 Constraint manipulation

From the conjunction of all temporal constraints numerous conclusions can be drawn. For
instance, it can be deduced from the constraints above that

31H:BTL - 413H:BTL IN 3..52.

It can even be deduced that the requirements upon the train service TB-KHL are incon-
sistent: no schedule can meet them all. By applying a few simple rules, most inconsistent
constraint sets can be tracked and reported to the planner. He can act to remove incon-
sistencies; the above inconsistency could be removed by deleting line 414, by removing the
regularity requirement or by altering the infrastructure, e.g. by specifiying two unidirec-
tional sections between TB and KHL. Another possibility would be to shorten the time to,
say, 12 minutes by using faster trains or omitting intermediary stops.



When all inconsistencies have been removed, schedules can be generated by choosing a
value for some variable in accordance with the initial constraints, adding this choice to the
constraints and again drawing conclusions from the extended constraint set. The procedure
is repeated for every variable that is not yet determined completely by the constraints. If a
choice turns out to be inconsistent, backtracking is used.

An alternative for schedule generation is using linear and integer programming techniques.
In this case, in addition to meeting the constraints, some goal function can be optimized.

3.6 Simulation

Generated schedules, together with infrastructure can be tested by simulation. One needs to
add scenarios, e.g. disturbances of waiting times at stations due to minor technical problems.
Decisions have to be made, e.g. priority in case of conflicts at nodes or whether trains wait
for their connections or depart according to schedule.

It is possible to specify decision rules in ExSpect and evaluate the performance of infras-
tructure, schedule and rules together by simulation. ExSpect is even capable of interactive
simulation, allowing a human controller to make or overrule decisions.

By testing various schedules in various scenarios, it should be possible to compare different
infrastructure variants.

4 Present situation

The system desribed above has not yet been implemented as described above. The present
infra editor uses other building blocks, that are somewhat more cumbersome to use. The
example net above would look as follows.
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9. Net specified in current system

The main difference is that rail stretches are components themselves instead of a pair of
places. This on average doubles the number of objects to input. Adding the tabular data
is done with ASCII editors; their output is transformed by the ‘awk’ program into ExSpect
format. The temporal constraints are then generated by running the ExSpect system: the
information about trains and their timing is given to and extracted from the components
by tokens representing trains and finally stored into a file.



The marketing requirements are then added using a text editor and stored in a database.
The constraint syntax is limited to expressions of the form

v1 — v IN ¢1..co,

where the v-s are variables and c-s constants. These constraints are then manipulated very
fast, testing them for consistency within seconds and generating schedules within a few
minutes. This is done by the CADANS program developed by Schrijver and Steenbreek
(CWI Amsterdam). Simulation with scenarios and decision rules has not been implemented
yet.

4.1 Problems encountered

Initially, NS was surprised and delighted that automated schedule generation was indeed
possible. In the old situation, making an infrastructure proposal and a schedule was done
by hand, solving problems as they appeared, making it nearly impossible to make several
alternative schedules for the same infrastructure variant. When the initial enthousiasm was
over, several shortcomings of the system were recognized however.

While specifying infrastructure, a planner’s decision corresponds to several manipulations
with the editor. A special-purpose rail net editor would have done a better job than the
general-purpose Petri net editor extended with a library of building blocks.

In adding tabular data, consistency checks with the target infrastructure are limited. The
generation of temporal constraints is not very fast for large nets, moreover minor modifi-
cations to the infrastructure or data require a regeneration of all constraints, instead of a
local update.

The link of temporal constraints with the planners decisions that led to them has been lost
in the generation process, so the temporal constraints themselves have to be interpreted.

Finally, the platform used is a SUN workstation with Open-Windows. The usergroup is
instead used to PC’s with MS-Windows. This problem will be solved in the near future
when ExSpect becomes available on PC platforms.

4.2 Contribution of Petri net theory

The role of Petri net theory in DONS has been very small so far. What has been proved
is that rail nets with their static structure can be adequately modeled as Petri nets. The
possibility for modeling and simulation within a graphical context has been one of the
reasons for NS to carry out the DONS project with ExSpect.

Generally, Petri nets with colour and hierarchy allow for a DFD-like modeling method that
is very attractive to non-experts, while still retaining a formal semantics. The existence of
an ASCII-based description makes it possible to transform models by tools like ASF+SDF
for further processing by other software.

There will be opportunities for more advanced theory in the future. In modeling rail nets
with their control structures, some interesting questions arise that could be answered by
Petri net theory. These questions adress safety (e.g. prove that trains cannot collide) as well
as performance (e.g. the capacity of a controlled net).

Seen in this light, the DONS project is another step towards applying Petri net theory to
traffic problems in practice.
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