
Explicit Intelligence in Adaptive Hypermedia:

Generic Adaptation Languages for Learning Preferences

and Styles

Natalia Stash
Faculty of Computer Science and

Mathematics
Eindhoven University of Technology
Postbus 513, 5600 MB Eindhoven,

The Netherlands
+31-40-247 3874

nstach@win.tue.nl

Alexandra Cristea
Faculty of Computer Science and

Mathematics
Eindhoven University of Technology
Postbus 513, 5600 MB Eindhoven,

The Netherlands
+31-40-247 4350

a.i.cristea@tue.nl

Paul De Bra
Faculty of Computer Science and

Mathematics
Eindhoven University of Technology
Postbus 513, 5600 MB Eindhoven,

The Netherlands
+31-40-247 2733

debra@win.tue.nl

ABSTRACT

This paper deals with a new challenge in Adaptive Hypermedia

and Web-based systems: finding the perfect adaptation language

to express, independently from the domain model (or even

platform), the intelligent, adaptive behaviour of personalized Web

courseware. The major requirements for the ideal language are:

reuse, flexibility, high level semantics, and ease of use. To draw

closer to this ideal language, we compare two such language

proposals: LAG, a generic adaptation language, and a new XML

adaptation language for learning styles in AHA!, LAG-XLS.

Categories and Subject Descriptors
H.1 [Information Systems] Models and Principles; I.2.4

[Artificial Intelligence]: Knowledge Representation Formalisms

and Methods; H.5.4 [Information Interfaces and Presentation]:

Hypertext/Hypermedia - architectures, navigation, user issues;

H.3.3 [Data]: Data Structures - distributed data structures,

graphs and networks; K.3.1 [Computers and Education]:

Computer Uses in Education - distance learning.

General Terms
Design, Human Factors, Standardization, Languages, Theory.

Keywords
Plug-and-play intelligence, learning styles, user modelling,

adaptive hypermedia, authoring of adaptive hypermedia.

1. ADAPTATION LANGUAGE AS AN

INTERMEDIATE PLATFORM

1.1 Benefits on an Intermediate Platform
Creation and authoring of adaptive, “intelligent” courseware can

be a cumbersome process [13]. In order to create a personalized,

rich learning experience for each user, not only the actual content

of the lesson has to be prepared, but much more. Catering for

different user needs means creating different (labelled)

alternatives of the same content; this in turn leads to multiple

paths through that content. This content organization is often

called in the Adaptive Hypermedia (AH) literature the creation of

the Domain Model [42]. Adaptive dynamics design also embraces

the specification concerning the kind of user expected, given the

content alternatives. Often, this is done in the form of user

attributes that are specified in what is usually called a User Model

[6] (UM). Moreover, in the educational field there is a serious

need for a separate Pedagogical Model [14], which establishes

adaptation and interaction types for the different kind of learners,

according to pedagogic strategies [9]. Finally, machine

specifications and constraints have to be considered, via, e.g., a

Presentation Model [13]. All these are connected via an

Adaptation Model [42]. Therefore, authoring of personalized

courseware can be a difficult and costly process. There are

different ways of striving towards alleviating what can be called

the ‘authoring problem’. Two ways of dealing with it are:

1. To consider the difficulty of the first-time authoring process

unavoidable and to concentrate on improving reuse

capabilities. In this way, the cost could be reduced by reuse

of previously created material and other components.

2. To lighten the authoring burden, by moving away from the

platform dependent authoring style, common especially in

adaptive hypermedia web-based systems, towards platform

independent authoring.

In this paper we concentrate on the first solution, reuse. The

solving of one issue actually offers solutions of the second, but in

this paper, this issue is not followed-up. This paper looks instead

at what we consider the most challenging and difficult task for the

reuse topic: reuse of intelligent, adaptive behaviour. The

approach taken here is to look at defining Adaptation Languages,

as vehicles for the intelligent behaviour of the AH. This means

that the reusable items are not only the static parts of the authored

courseware (such as the content of the DM), but the actual

dynamics as well. This would be equivalent to exchanging not

only the ingredients, but the recipes as well. This extraction and

separate expression of semantically relevant, reusable, explicit

‘artificial intelligence’ of AH systems can also feedback to AH

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’05, Month 1–2, 2005, City, State, Country.

Copyright 2005 ACM 1-58113-000-0/00/0004…$5.00.

systems as analyzer of the level of ‘intelligence’ they can provide.

As requirements we enforce that the adaptation behaviour

described by the adaptation languages should be reusable and the

language extensible –the latter as it may be necessary to be able to

create new strategies that need the addition of new elements.

Ideally, the language should use or extend the emerging Web

standards, which will enhance reusability and compatibility with

current implementations.

Next, we are going to shortly describe the connection of our

research to standards, especially from the point of view of static

element reuse.

1.2 Connection to standards
Here we look at what current standards apply or are connected to

recent AH research1 in general and can be used or extended for

our research, in particular. Firstly, we are aiming at a model-

driven architecture [30], having as a goal the separation of the

model from its implementation, for enhancing flexibility and

reuse. Secondly, as we aim at educational systems [20], we can

follow the Information Technology Standard bodies (ISO, JTC1,

IEC), informed by CEN and IEEE2. Specifically, we aim at reuse

of both static and dynamic elements. E-learning standards

enabling reuse (please note however that it is mainly reuse of

static material, and not dynamic, as in our research), are: Learning

resources: metadata: IEEE-LOM (Learning Object Metadata)

[22], Dublin Core (Metadata for Electronic Resources) [18],

ADL-SCORM [3] (Reusable learning content as “instructional

objects”); Data exchange: IMS-CP (Content Packaging) IMS-

CPS, Data formats: IMS-QTI (Question and Test

Interoperability), Education Modelling Languages (EML [19]),

e.g. with learning paths specifications: IMS-LD (Learning Design

[24]). From the point of view of defining the users of the learning

systems, we have: Learner model IEEE-PAPI (Public and Private

Information for Learners) [21], IMS-LIP (Learner Information

Package Specification) [23]; Accessibility: Web Accessibility

Guidelines (WAI); Rights: Creative Commons. This long list of

standards can specifically influence AH educational research. A

careful selection is needed to avoid clashes resulting from the use

of more standards together.

Recently, within AH Web-based systems, such standards started

being used for adaptive learning systems (e.g., Personal Reader

[17]; ALE [27])1. Even if AH requirements are not exactly met by

these standards, implementations based on them try to keep as

much as possible of the AH capabilities. Similarly, adaptive

hypermedia techniques are starting to be applied to the heavily

standardized semantic web [40] developments [10].

The future might also see more elements of the dynamics of

adaptive systems entering the standards field. We believe this is

the only way to ensure real interfacing, exchange and reuse. One

attempt in this direction is the IMS ADL Simple Sequencing

Protocol [25]. However, this protocol fails to provide all the

features of adaptation that adaptive hypermedia can offer [1], such

as disconnecting the prerequisites from the domain model.

Therefore, at present, more research has to be done to determine

1 Traditionally, AH research ignored standards.

2 LTSC: Learning Technol. Standards Committee; CEN updated

by Prometeus & Ariadne [4]; IEEE by IMS, AICC & ADL

what the best representation for such adaptive, intelligent

courseware dynamics is, and here is where our research fits in.

Next, we are going to briefly analyse the current state of the art

concerning how and what type of system dynamics and adaptation

is implemented in current courseware.

1.3 Elements of Course Dynamics in AH
In order to extract the main elements of personalized, intelligent

course dynamics, we work on a concrete case of representing

personalization based on learning styles (LS). This choice is based

on the degree of difficulty of representing LS-based strategies. LS

and their effects on learning have been examined most carefully in

[9]. This 182 page report “reviews the literature on learning styles

and examines in detail thirteen of the most influential models. The

report concludes that it matters fundamentally which instrument is

chosen. The implications for teaching and learning in post-16

learning are serious and should be of concern to learners, teachers

and trainers, managers, researchers and inspectors.”

Our review of research on and application of learning styles in

Adaptive Hypermedia [34] shows that existing systems can

provide adaptation to the learner in terms of content adaptation

[6], navigation paths [6] or usage of multiple navigational tools

[16] These adaptation types limit the possible response of the

system to accommodate the different learning styles. The most

frequently used elements of instructional strategies [9] we have

found in Adaptive Web-based Education literature are:

• Selection of media items to accommodate different learner

preferences; this can also be extended to different learning

styles. For instance, the same information (or the same concept)

can be presented in various ways, by using alternative media

types [6]– audio, video, image, text, etc. Depending on the

learner’s style a certain item (or group of items) may be

included into the final presentation. In terms of learning styles,

we can say that the verbalizers [32], who prefer textual

information, may be presented with text and possibly spoken

audio; whilst the imagers, who prefer pictorial information, can

be shown images, diagrams, graphs, charts or other items about

the same concept [32]. The selection process can be applied not

only to media items, but also to other types of items.

• Ordering information or providing different navigation paths.

The order in which information items are processed can be

based on learner needs. For instance, some learners prefer to

learn things by doing something actively first whilst others

prefer to collect data first and then turn to action (this

corresponds to the active and reflective learning styles,

respectively). Moreover, some learners tend to learn through a

linear, step-by-step process which is logical and systematic,

whilst others want to see the big picture before they tackle the

details (this corresponds, respectively, to the sequential and

global learning styles [20]).

• Providing learners with navigational support tools. Depending

on the learner preferences, different learning tools can be

provided. In terms of catering for learning styles, for example,

field-dependent [41] learners can be provided with a concept

map, graphic path indicator, advanced organizer, etc. in order to

help them organize the structure of the knowledge domain.

Alternatively, field-independent learners might be provided with

a control option showing a menu from which they can choose to

proceed with the application in any order [37].

There are fewer systems which attempt to provide, along with

various instructional strategies, some mechanisms for inferring

the learner’s preferences based on his/her actions and selections.

For example, MANIC [36] uses a Naïve Bayes Classifier to

reason about the learner’s preferences in terms of explanations,

examples and graphics; in iWeaver [26] the application of a

Bayesian network is planned to predict and recommend media

representations to the learner.

1.4 A View on Adaptive Learning Strategies
To distinguish between the different types of strategies, we need,

beside the previous list of elements of instructional strategies, a

high-level classification based on their overall semantics. From

the analysis of the literature, we observe that we can classify

strategies according to their application range, as follows:

• Instructional strategies – define how the adaptation is

performed. Namely the adaptation rules specified in the strategy

are used to adjust the presentation to the learner with a

particular learning preference [26], style [36] or need [6]. We

argue that it is very important to provide several instructional

strategies for an application so that the learners or tutors can try

different ones and select the most appropriate.

• Instructional meta-strategies – inference or monitoring

strategies – are applied in order to infer the learner’s

preferences during his/her interaction with the system [36],[34].

These strategies cannot completely replace the existing

psychological questionnaires for determining learning styles;

however they can be used as a simplified, unobtrusive way to

infer the learner preferences corresponding to these styles via

their browsing behaviour.

The first type of strategy is more frequently used, but the second

type is still novel and requires some clarification. A meta-strategy

can for example, track the learner’s preferences by observing

his/her interactions with the system [36]. It can track some

repetitive patterns in the learner’s behaviour, like accessing

particular types of information (if a choice of different types is

available). It can observe that the user has a preference for textual

information, which is typical for a learner with verbalizer style,

or, on the contrary, that the user has a preference for the pictorial

representations (imagers or visualizers). It can also trace the

navigational paths: browsing through the learning material in

breadth-first order - typical for the learners with field-dependent

or holist style - versus navigating in depth-first order, that might

indicate a learner with analytic style [9],[31]. Meta-strategies of

this type update some user model parameters which can be used

later on for selecting a particular instructional strategy. These

parameters can indicate what the system ‘thinks’ the learner’s

preferences are. In most existing systems that provide adaptation

to a learner’s styles, information about the learning styles and

preferences is not updated during the interaction. However, the

learning style preferences might actually change, depending on

various circumstances [9] (for instance on the mood, time of day,

subject, etc.). Meta-strategies could trace if the preferences

specified by the learner when he begins working with the system

stay the same or change. In case the learner’s behaviour is

different than initially specified, a strategy corresponding to

another learning style might be suggested. Other examples of user

model parameters which can be influenced by the actions

specified in the meta-strategies are: level of difficulty of the

material presented to the learner, link colours, etc. These actions

occur when the learner accesses the concepts of an application.

According to the type of adaptation provided, we can refine the

classification of adaptation strategies by analyzing the external

(interactive) actions occurring, as follows (see Table 1).

Basic actions on
items

Selection
Showing the content of an item
Showing a link to an item

Hierarchical
actions on items

Actions on child items
Actions on parent item

Actions on groups
of items (e.g.,
siblings)

Ordering
Performing ‘actions on items’ on each
group item

Actions on the
overall environment

Changing the layout of the presentation

These are actions which directly determine changes in what the

users sees. Similar to meta-strategies, instructional strategies also

perform internal actions (mainly user model updates). These

actions can be classified according to traditional user model

classification and are therefore not further explained here.

In the following, we will show how we have used our analysis of

the state of the art and of the standards as well as an existing

adaptation language, LAG, to create a new language, based on

Web technologies.

2. LAG: Model, Language & Implementation
The LAG model is a specification of the Adaptation Model, as

defined by the LAOS model [13]. LAOS is a generic model for

authoring of adaptive hypermedia, detailing a Domain Model, a

User Model, and a Goal and Constraints Model (which becomes

the Pedagogical Model for educational applications), a

Presentation Model (dealing with the different machine-oriented

ways of presenting the same information: e.g., different colours,

formats, etc.) and an Adaptation Model. For the purpose of this

paper, we only focus on the Adaptation Model, the sub-model that

allows reuse of dynamics, as opposed to current standards which

are mainly focused on static material reuse. The Adaptation

Model is the one representing the Artificial Intelligence

component of the Adaptive System.

2.1 LAG Model and Language: Review
In order to enable reuse of dynamics in personalization and

adaptation, we transformed the adaptation model into a 3-layer

model, LAG [12]. LAG consists, at the lowest level, of an

Adaptation Assembly Language, corresponding to the typical IF-

THEN rules in adaptive hypermedia. At the intermediate level, the

model requires a semantic Adaptation Language. This language

should incorporate more semantics, which should allow reuse in

different learning situations. Finally, at the highest level, the LAG

model situates Adaptive Strategies or Adaptive Procedures. These

strategies/ procedures3 are containers for the actual adaptation

program (which details, in machine readable adaptation language,

how the adaptation will be performed). In addition each strategy

has a description (semantic label) in natural language, which can

be directly used by authors to select a specific, ready-made

3 Procedures are new language constructs extending the language.

Table 1. Refined classification of actions in adaptive strategies.

strategy for their course. In this way, course contents creation and

the creation of adaptation dynamics for that course are kept

separate, and can be performed by different authors, at different

times (or by the same author at different times).

As an instantiation of the Adaptation Language in the LAG

model, the LAG Language [12] was introduced. This language

uses for syntax the LAG grammar (Figure 1), and is the basis of

an Intermediate Platform specification for adaptation dynamics.

Concretely, the LAG Language provides the building blocks for

the creation of Adaptation Strategies. Figure 1 shows the new,

extended version of the LAG grammar, improved after authoring

usability tests [11], as well as conversion and reuse tests (into two

delivery systems, AHA! [2] and WHURLE [28]).

PROG � DESCRIPTION VARS
 INITIALIZATION IMPLEMENTATION
DESCRIPTION � “// DESCRIPTION” COMMENT
VARS � ATTRIBUTE | (VARS)+ “,” VARS
INITIALIZATION � “initialization(”
 STATEMENT “)”
IMPLEMENTATION �“implementation(”STATEMENT “)”
STATEMENT � IFSTAT | WHILESTAT | FORSTAT |
 BREAKSTAT | GENSTAT | SPECSTAT | COMMENT |
 (STATEMENT) * STATEMENT | ACTION
IFSTAT � if CONDITION then (STATEMENT)
WHILESTAT � while CONDITION do
 (STATEMENT) [TARGETLABEL]
FORSTAT � for RANGE do (STATEMENT)
 [TARGETLABEL]
BREAKSTAT � break SOURCELABEL
GENSTAT � generalize((CONDITION)*)
SPECSTAT � specialize((CONDITION)*)
ACTION � ATTRIBUTE OP VALUE
COMMENT � “//”“text” | (COMMENT)* COMMENT
CONDITION � enough((PREREQ)+, VALUE) | PREREQ
RANGE � “integer”
PREREQ � ATTRIBUTE COMPARE VALUE
LABEL � “text”
TARGETLABEL � “text”
SOURCELABEL � “text_label_a”
ATTRIBUTE � GENCONCEPT | SPECCONCEPT
GENCONCEPT � “CM_type.concept.attr” |

 “CM_type.concept.attr_z”
SPECCONCEPT � “CM_x.concept_y.attr_z”
OP � “=” | “+=” | “-=” | “.=”
COMPARE � “==” | “<” | “>” | “in”
VALUE � “text”

The figure describes the components of an adaptive strategy

“PROG”. Each strategy has four main parts: description, variable

declarations, initialization and implementation. The description is

just a comment for the human reader (the author who has to

decide to apply this strategy or not). The variables are a new

addition, to prevent overlaps and clashes if multiple strategies are

applied on the same course: the use of these same variables should

be informative about the possible clash. The two phases of

initialization and implementation are also new. The initialization

should set all the variables in use during the strategy, before the

actual interaction of the strategy with the user (learner). It also

establishes what learning items have to be shown to the user from

the very beginning. The implementation part contains the actual

user interaction, activity description. Initialization and

implementation are built from statements. These building blocks

are the basis of the current version of the LAG language. The

adaptation language also allows assembly language statements,

such as IF-THEN statements. However, it also contains more

general programming statements, such as WHILE, FOR, and

BREAK statements, and comments. The most specific statements

are the SPECIALIZE and GENERALIZE statements, that allow

the user to go down, or up the learning item hierarchy respectively

– depending upon the fulfilment of certain conditions. These

statements use the structure of the learning material, therefore

have greater semantics for authors familiar with the learning

material. The conditions are either prerequisites, or combinations

of ENOUGH prerequisites. The value in the latter construct is a

number, establishing how many of the prerequisites have to be

fulfilled4. In such a way, more complex AND-OR combinations of

conditions can be obtained. The details of the grammar have been

simplified a little. However, it is important to remark that the

ATTRIBUTES used in initializations, actions and comparisons

can be of two main types: GENERAL or SPECIFIC. The specific

attributes refer to an instance of the learning material, whereas the

general attributes refer to materials of a given type. Therefore,

strategies can be written general enough to be able to be applied

to any given set of learning materials, given the condition that

these materials can be identified as being of a given type.

From the strategy classifications in section 1.4, LAG can create

both strategies and meta-strategies, as will be shown in the

following section. From the point of view of actions, LAG

supports selection, showing of content of an item, hierarchical

actions, actions on groups (except for ordering) and actions on

the overall environment. Ordering is part of the Goal and

Constraints Model in LAOS, and links to items can only be

displayed if they are represented in the Domain or Goal and

Constraints Models.

2.2 (Authoring of) Learning styles with LAG
The LAG grammar was used as a basis of the MOT-adapt

interface [28]. This interface is depicted in Figures 2 & 3.

Figure 2 shows the adaptive strategy written in LAG for the

Verbalizers versus Imagers learning style, in a Web environment.

In terms of presentation mode, the verbalizers should be presented

with more textual information, whilst the imagers should be

receive more graphic information, such as pictures, diagrams,

charts. The value of the VERBvsIM attribute is an integer

between 0 and 100. We use a value between 30 and 70 to indicate

that the learning style is unknown or the learner has no strong

preference. Values between 70 and 100 indicate that the user is a

verbalizer, values between 0 and 30 indicate that he is imager.

The strategy is written in a simple way, by using IF-THEN

constructs only, to enable an easy comparison with the new XML

adaptation language presented later on in the paper (section 3).

Showing the content of an item is done in LAG by an action

statement ‘PM.Concept.item=true’5, e.g., ‘PM.Concept.image=

true’ means showing the image. User model attributes are

accessed in a similar way: ‘UM.Concept.VERBvsIM <30’ means

that the user tends to be an imager. The strategy is detailed for

imagers only, the other case being symmetrical.

4 The idea behind it is simple yet semantically significant: it is

based on computer games, where a player has to collect a

number of items to advance between levels. This number may

be fixed, but the choice of which items to select is up to him.

5 PM stands for Presentation Model in LAOS.

Figure 1. The extrended LAG Grammar.

-
Figure 3 shows an example of an adaptive meta-strategy written

based on LAG. The top of the figure also shows the description of

the meta-strategy, as defined in Figure 1. The adaptation language

constructs and variables are similar to the ones in Figure 2.

Concluding, we can say that LAG allows reusable dynamic

representations at different levels: at adaptation language level, by

reusing the language constructs, and at adaptation strategy level,

by reusing adaptive procedures as new language constructs, but

also by reusing whole adaptive strategies (by applying them to

different domain maps and user maps, or exporting them to other

systems).

3. A New XML Learning Style Adaptation

Language and Grammar: LAG-XLS
The new XML language started with the purpose of taking over

these advantages of dynamic reuse, whilst adding new research

results, as presented in section 1.3: the review on the most

frequently used instructional methods to support learning styles.

LAG-XLS instantiates the Adaptation Language layer of the LAG

model as well, but with different goals. In our new XML-based

adaptation language we try to express the first two methods:

selection of media items (or selection of a particular type of

information in general) and ordering information – in a simple

and straightforward manner. Moreover, the refined classification

of actions is used as shown in Table 1.

We have based our new language on LAG, and have tried to

alleviate some of its problems, whilst at the same time simplifying

parts of it. This is based on our desire to identify more specific

language constructs aimed at learning style strategies, as well as

being completely AHA! compatible. We initially decided to create

an XML based language, with the aim of aligning it with semantic

web research [40]. Reusability is achieved in the XML Learning

Style Adaptation Language for AHA! by specifying each strategy

as a separate XML file. XML (EXtensible Markup Language

[39]) is a cross-platform, software and hardware independent tool

for representing and transmitting data. XML elements for learning

adaptive strategies are not yet defined in the literature, so we

endeavoured to invent and describe our own elements.

The language built for AHA! bases selection and ordering of

concepts on the attributes and values of their sub-concepts, as

follows. In the hierarchy of concept relationships, sub-concepts

(defined as AHA! object concepts) are the children of a concept

(object or page concept)6. The names of the attributes and their

values indicate how these sub-concepts represent the parent

concept. For instance, if the media attribute is audio, the sub-

concept will represent an audio version of the concept.

Another goal was that of expressing monitoring strategies. To

achieve this, the adaptation language for AHA! contains elements

specifying user model updates.

The resulting LAG-XLS language for AHA!, corresponding to

various strategies (extracted from what was previously

implemented in ‘adaptation assembly’ form only, but also from

literature review, and informed by the refined classification in

Table 1) are presented in the following DTD (Figure 4). The

meaning of the DTD elements and attributes is explained below:

• strategy – is the root element of a file corresponding to a

strategy, attribute name – the name of the strategy;

• description – is the strategy meaning; e.g., the corresponding

learner model for which this strategy has been created;

• if – a statement to specify if-then-else rules (currently we

have only if statements within the strategy element, however

we are thinking about applying other statements as well, like

for, while, etc., as in LAG);

• condition – appears within an if statement; is a Boolean

expression which can contain some user-related information,

for example, information about the user’s learning style;

6 In AHA! there can be different types of concepts, e.g., abstract,

page or object (fragment) concepts. Abstract concepts do not

have a resource associated with it. Page concept can have one or

more associated resources. Fragment concepts should be

included into pages; they can have multiple resources, however

they represent alternative versions of a part of a page. These

resources are well-formed documents, to be scanned by the

AHA! engine for other recursively included objects. Therefore

they do not have a header and cannot be viewed separately.

Figure 3. The LAG Grammar: Imager versus Textual Meta-

strategy.

Figure 2. The LAG Grammar: Imager Strategy.

• then – an element defining a set of actions to be performed

when the condition is satisfied;

• else – an element defining an alternative set of actions;

The following elements are used to define how the adaptation is

performed:

• select – selecting a concept representation from a number of

existing ones to be included into the final presentation;

• sort – sequencing different concept representations

depending on the user’s learning style, reordering them from

most to least relevant.

The “select” and “sort” elements have an attribute

“attributeName”. The value is provided by the author depending

on the aspects of the concepts he wants to include or reorder in

the final presentation. For example, we have a concept which has

several children representing it via different types of media. All

the children concepts have an attribute “media”. The value of this

attribute for different concepts can be “audio”, “video”, “text”,

“image”, etc. In the final presentation for various strategies (links

to) media items can be explicitly included or not; similarly, (links

to) media items can be ordered in different ways:

• showLink – showing a link to the concept representation;

• showContent – showing the content of the concept

representation;

• showDefaultContent – showing a default content specified

by the author in case no other representation is found for a

particular concept;

• navigationType – type of the navigational structure:

- “Breadth-first structure” – presenting the material in

breadth-first order;

- “Depth-first structure” – similar for depth-first order;

• action –specifies how the user model is updated; attribute

UMupdate shows whether it is an absolute or relative update;

• UMvariable – indicates which user model variable should be

updated, namely which attribute of which concept;

• expression – is the value used for user model update.

To exemplify the use of the XML adaptation language, we follow

the previous example from section 2.2, and write a strategy for the

verbalizer versus imager learning style. Due to of lack of space

we present only the part of the XML file corresponding to the

imager learning style. To indicate that the user is either a

verbalizer or imager we use a similar user model attribute as in the

LAG example, section 2.2, “VERBvsIM”, for the AHA!

“personal” concept7. In AHA! the learning styles related attributes

of this concept can be initialized via the registration form.

The strategy in Figure 5 uses the XML adaptation language

elements: description, select, showContent, showLink. It also uses

traditional AH elements such as IF-THEN constructs.

The meaning of the strategy is that if the user is an imager

(personal.VERBvsIM <30)8 then, for each concept which can be

represented by different media types9, an “image” representation

is included in the presentation. If no “image” representation

exists, then the default representation provided by the author is

used. The author can also specify that links to other concept

representations should be included. In the example a link to a

textual representation is inserted using the “showLink” element.

This approach is different from the one presented previously [35].

There, in order to provide this kind of adaptive behaviour we had

to repeatedly specify the same adaptation rules for all concepts of

the application domain which allowed different representations.

By using this new approach, we can specify a certain adaptive

behavior once, in one strategy and apply it to the whole domain.

7 a pseudo-concept created when a user first logs into the system,

storing user information such as name, login, password. As all

concepts in AHA!, it can have arbitrary attributes. It can be used

to specify attributes reflecting the learning style.

8 The ‘strange’ escape sequences & > and < in the

XML file are needed because the XML parser will translate

them to &, > and <. Without the escaping the XML parser

would interpret, instead of translating them

9 children of this concept have an attribute “media”

Figure 4. XML Learning Style Adaptation Language DTD.

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT strategy (description, if*)>
<!ATTLIST strategy name CDATA #REQUIRED>
<!ELEMENT description (#PCDATA)>
<!ELEMENT if (condition, then, else)>
<!ELEMENT condition (#PCDATA)>
<!ELEMENT then (select, sort,
navigationType, action*)>
<!ELEMENT else (select, sort,
navigationType, action*)>
<!ELEMENT select (showContent*,
showContentDefault*, showLink*)>
<!ATTLIST select attributeName CDATA
#REQUIRED>
<!ELEMENT sort (showLink*)>
<!ATTLIST sort attributeName CDATA
#REQUIRED>
<!ELEMENT showContent (#PCDATA)>
<!ELEMENT showContentDefault (#PCDATA)>
<!ELEMENT showLink (#PCDATA)>
<!ELEMENT navigationType (#PCDATA)>
<!ELEMENT action (UMvariable, expression)>
<!ATTLIST action UMupdate CDATA #REQUIRED>
<!ELEMENT UMvariable (#PCDATA)>
<!ELEMENT expression (#PCDATA)>

Figure 5. Strategy of Verbalizer versus Imager.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE strategiesList SYSTEM "strategy.dtd">
<strategy name="VerbalizerVersusImager">
 <description>Strategy for "Verbal" versus "Visual" style of the
Felder-Silverman Learning Model</description>
 <if>
 <condition>personal.VERBvsIM < 30</condition>
 <then>
 <select attributeName="media">
 <showContent>image</showContent>
 <showContentDefault>default</showContentDefault>
 <showLink>text</showLink>
 </select>
 </then>
 </if>
 <if>
 <condition>personal.VERBvsIM > 29 &&
personal.VERBvsIM < 71</condition>
 <then>…</then>
 </if>
 <if>
 <condition>personal.VERBvsIM > 70</condition>
 <then>…<then>
 </if>
</strategy>

This approach is based on the LAG language of MOT [29], but is

adapted to use current W3C Web technologies (such as XML).

Next, we are going to present a short illustrative example of an

instructional meta-strategy, corresponding to the LAG meta-

strategy in Figure 3. It also can be used to infer the user’s

preference for either textual or pictorial information. Here, the

author specifies the actions which are performed when the user

accesses an AHA! concept (like increasing or decreasing the

confidence of the system that the learner has a particular learning

style). Here we also present only a part of the XML file indicating

a decrease in the confidence of the system that the user is a

verbalizer; this corresponds to an increase in the confidence that

he/she is an imager.

In this strategy we use two new AHA! variables:

personal.VERBvsIM.initial and personal.traceTextvsImage. Such

variables can be added by the author of an application and

initialized through the registration form. The first variable stores

the initial value of the “VERBvsIM” attribute. The second

variable indicates whether the user wants the system to infer his

preferences. For example, the user does not know what his

learning style is and wants the system to trace it. He might still let

the system trace his preferences even if he explicitly specified

what his learning style is. If tracing is desired the value of

personal.traceTextvsImage is set to true. During the actual

interaction of the learner with the system, the user’s repetitive

accesses to pictorial representations increase the confidence of the

system that the user is a imager, indicated by the expression var:-

5. Var means that the value can be changed by the author while

applying the strategy to a particular application. In the strategy

presented in the Figure 6, the default is –5. The system will trace

the user’s behavior until the value of the “VERBvsIM” attribute

reaches a meaningful threshold (30 or 70), then the value of the

attribute personal.traceTextvsImage will be set to false and tracing

will stop. Afterwards an instructional strategy corresponding to

the new value of the “VERBvsIM” will be suggested to the user.

If the learner is not satisfied with an instructional strategy he can

always inspect his user model and make necessary corrections.

AHA! provides a special tool that allows authors to create forms

to let the learners change values of attributes of concepts in their

user model. It is thus possible to create a form that lets a learner

change their “VERBvsIM” value.

This is an example of an XML adaptation strategy which can be

reused by various authors. For their own applications, authors

might create their own visions of the verbalizer versus imager

strategy or the strategy for tracing the learner’s preference for

textual or pictorial information. They might use a different

attribute of different type indicating the user’s style (instead of

“VERBvsIM”), they might also specify a different range of values

for the attribute and different kinds of adaptation using

“showLink”, “showContent” elements. They might specify as well

a different set of actions for inferring the learner’s preferences.

The only limitation is that when creating strategies they can only

use the elements which are present in the DTD.

The adaptation language for creating strategies allows authors to

specify generic adaptation rules. Moreover, the default values of

the parameters in each rule can be replaced by the author.

Similarly to the MOT adaptation language, the XML adaptation

language can deal with specific as well as generic concepts. The

examples presented so far only show dealing with generic

concepts, specified by the variable “concept”. While applying the

strategy to an application this name will be replaced with the

specific concept names. Moreover, the specific concepts can be

directly used in the strategy, as in the example below:

NameSpecificConcept.Attribute = Value

Currently a more user friendly authoring tool for creating adaptive

strategies is under development. An authoring tool will allow the

authors to create their strategies using the predefined set of

elements (specified in the DTD). The authors of adaptive

applications should first use the tool to create adaptive strategies –

the result will be a separate server-side XML file for each

strategy. Skilled authors can also manually create or edit XML

files corresponding to strategies, as shown in the examples. The

created files will be put into the author’s directory, available only

for him/herself. A set of “standard” strategies which can be reused

by all authors is available and will be extended. If authors want to

let others use some of their strategies, they would have to add

them to the list of standard strategies.

4. Applying XML Learning Style Adaptation

Language to AHA!
In order to visualize the strategies not only from the author’s, but

also from the delivery (learner’s) point of view, let us have a look

at how the “VerbalizerVersusImager” strategy (Figure 5) will be

converted for the AHA! delivery engine. The author can create the

Domain and Adaptation model for the AHA! courses using a

high-level authoring tool called Graph Author [15]. A new option

has been added to the tool, allowing an author to choose which

strategies to apply to a particular course, and in which order (in

case of application of several strategies, order can be important).

The author might need to rewrite some information (such as the

parameters specified with “var”). Otherwise, default values will be

applied. During saving, the AHA! concept relationships graph is

translated into AHA! low-level (assembly) adaptation rules. The

applied strategies may influence the requirements for concepts

(the desirability of concepts) and the set of actions to be

performed when the concepts are accessed. Additional application

pages (in XHTML format) might be generated as well.

The strategy has to be applied to all AHA! concepts in the given

course which have sub-concepts with an attribute “media”. The

application of the XML adaptation strategy in Figure 5 should

have as effect the display of the content of the appropriate sub-

concept, depending on the value of the attribute (“image”,

Figure 6. Meta-Strategy of Verbalizer versus Imager.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE strategiesList SYSTEM "strategy.dtd">
 <strategy name="TextvsImagePreference">
 <description>Inferring the preference for textual or pictorial
information</description>
 <if>
 <condition>personal.VERBvsIM.initial > 29 &&
personal.VERBvsIM.initial < 71 && concept.media
== "image" && personal.traceTextvsImage</condition>
 <then>
 <action UMupdate="relative">
 <UMvariable>VERBvsIM</UMvariable>
 <expression>var:-5</expression>
 </action>
 </then>
 </if> …

</strategy>

“default” or “text”), or only a link to inappropriate sub-concepts.

For the imager an “image” should be included into the

presentation. If an “image” is not found then the system will look

for a “default”. Due to the fact that inappropriate sub-concepts are

added as links, the learner can still follow a link to a “text”.

In Figure 7 we show part of the structure of an AHA! parent

concept via a simplified syntax. This parent concept represents the

conversion of an AHA! concept from the XML adaptive strategy

language (Figure 6) to the AHA! low-level assembly language,

which the AHA! system can deliver. This example shows that the

value of the “VERBvsIM” attribute of the concept “personal”

influences the “showability” attribute, which in turn determines

the fragment to show.

The contents of files generatedfile2.xhtml and

generatedfile3.xhtml are explained below. They are needed

because the conversion into AHA! does not run as smoothly as

expected. The “text” concept is an AHA! object concept.

Resources associated with this type of concepts can only be seen

if included into pages. Therefore, a new page resource file (e.g.,

generatedfile1.xhtml) that includes it has to be generated,

representing a viewable version of the “text” concept, as follows:

<!DOCTYPE html SYSTEM "/aha/AHAstandard/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"><body>

<object name=“objectText” type=“aha/text” />

</body></html>

The goal of this resource file is to add a header wrapper to the

AHA! object concept. The resource file uses an “object” tag for

conditional inclusion of objects. The specified type “aha/text”

does not mean that the object is a text; it can be any media item. It

is used only as an indication that the object should be processed

by the AHA! engine.

Afterwards, a resource representing the AHA! parent concept has

to be also generated – a page resource, if the AHA! parent concept

is a page concept; or a fragment, if it is an object concept. The

first case is that of adaptive link destinations: i.e., when the

learner follows a link to a parent concept, the displayed content of

the concept will vary with the user model state. This means that

the same link to a concept will point to different resources

depending on the user model. The second case results in

adaptation of the content. This happens if the parent concept is a

part of some other page. This page will contain different contents,

depending again on the user model. If we assume that the parent

concept is an object, the file (generatedfile2.xhtml) corresponds to

the AHA! parent concept as follows:

<object name=“objectImage” type=“aha/text” />

Text

Similarly, the resources representing the parent concept under

other conditions (e.g., when the user is a verbalizer or his/her style

is not known) will be generated (generated3.xhtml and

generatedfile4.xhtml respectively).

The figures 8 & 9 illustrate the alternatives for the strategy

visualizer versus imager delivered by the AHA! Web-based

system. The content example is taken from the MOT-adapt user

guide for adaptation language creation. Figure 8 presents the

textual description of “steps to build an adaptive strategy in

MOT” to verbalizers. Correspondingly, Figure 9 presents these

steps in a diagram form for imagers.

Figure 7. Example part of the generated structure for the

AHA! concept.

<concept>
 <name>conceptname</name><expr>true</expr>
 <attribute><name>access</name>
 <action>
 <if> personal.VERBvsIM < 30</if>
 <then>conceptname.showability := 0</then>
 </action>
 <action>
 <if> personal.VERBvsIM > 70</if>
 <then>conceptname.showability := 1</then>
 </action> …
 </attribute>…
 <attribute><name>showability</name>
 <casegroup>
 <defaultfragment> generatedfile4.xhtml</defaultfragment>
 <casevalue><value>0</value>
 <returnfragment>generatedfile2.xhtml</returnfragment>
 </casevalue>
 <casevalue><value>1</value>
 <returnfragment>generatedfile3.xhtml</returnfragment>
 </casevalue>
 </casegroup>
 </attribute>
</concept>

Figure 8. Presentation of MOT user guide to verbalizer.

Figure 9. Presentation of MOT user guide to imager.

5. DISCUSSION & CONCLUSION
Before we conclude on the two adaptive languages extracting

artificial intelligence features of AH, as described in this paper,

we first analyze the few comparable approaches that we have

found in the literature. Recently, similar attempts at defining a

reusable representation for the system ‘intelligence’ and dynamics

of web-based adaptive education environments have been

researched and can be classified into the following categories, as

follows:

• adaptation languages: In [5], the authors define adaptive rules

based on a collection of sets employing the IMS Learning

Design [24]. These rules are only at the level of assembly

language of adaptation (according to the classification in [12]),

i.e., IF-THEN rules, but are enriched with extra semantics. For

this, they use semantically labelled actions (such as show, hide,

show-menu, sort-ascending, number-to-select, etc.). One

problem with this approach is that it mixes the user adaptation

(such as some material being not recommendable for a user)

with the actual presentation of this adaptation (hide it from

user). This problem is inherited from the strict adherence to the

IMS-LD standard, which does not make this distinction. In the

adaptive hypermedia literature [6], however, the presentation of

an item which is undesirable can vary from hiding to color-code

marking (e.g., ‘Red’ is undesirable). This type of presentation

depends on the degree of control the learner can have within the

learning environment. Moreover, the IMS-LD standard is

especially aimed at collaboration, and not at personalization.

• workflow models: The COW platform in [38] as well as the

WFMS in [8] use workflow modeling for dynamics

representation. However, in COW no personalization or

adaptation is envisioned. WFMS has a form of non-flexible

adaptation, comparable with the conditional fragment inclusion

technique in early adaptive hypermedia [6].

• task composition models: In [7], tasks are modeled and

alternative paths are created via AND and OR relations. This

alternation seems to be more dynamic than the Simple

Sequencing Protocol [25]. The problem is that the language

used for task definition is very domain dependent.

LAG has already addressed many of these problems, as it is a

higher level language that allows for an increased level of

semantics. User adaptation and presentation are kept separate. The

adaptivity allowed is extremely flexible and the language is not

domain dependent. One important drawback is that it does not

reflect the current Web-standards. LAG has been evaluated in real

life settings and the results have been described in [11].

The newly proposed LAG-XLS adaptation language is aimed at

alleviating this last problem. XML is a universally accepted

standard way of structuring data, where XML web-designers are

not restricted to a limited set of tags. Therefore the adaptation

language can be created and extended by defining new tags. The

language makes use of the new classification of actions (Table 1).

Moreover, the XML syntax ensures Web-readability and the

capacity to export to different systems. LAG-XLS has been

evaluated in real life settings and the results reported in [36].

The focus of the new language is however slightly different from

LAG, which is a more generic adaptation language, as the new

language specifically targets users’ learning styles and the

adaptive strategies corresponding to them, restricted by the DTD

definitions.

Currently we have defined and are experimenting in LAG-XLS

with a number of instructional strategies other than the one

represented in this paper, such as Active versus Reflective,

Auditory versus Visual, Holist versus Analytic, Field-Dependent

versus Field-Independent, Verbal versus Visual learners as well as

other monitoring meta-strategies, like inferring preferences for

textual or pictorial information or reading in breadth- or depth-

first order. We are thinking about the extension of the adaptation

language for defining more complex variations of the strategies.

We are planning to apply OWL (Web Ontology Language) as it

provides a number of useful constructs “oneOf”, “intersectionOf”,

“unionOf”, etc.

Both LAG and LAG-XLS instantiate the LAG Model adaptation

language. Both languages respond to the main solution envision

here: reuse. This paper therefore demonstrates that separating the

specific dynamics required for the complex issue of learning style

adaptive response is possible, and therefore paves the way for

exportable, reusable adaptive strategies on a global scale and their

integration into Web standards. We have demonstrated this by

comparing two adaptation languages, starting with what problems

they solve, what their underlying model is, how they differ from

other approaches, and what their positive and negative aspects are.

Moreover, by making the ‘intelligence’ in the adaptive

hypermedia systems explicit, not only can these AH systems be

analyzed as to the extent of ‘intelligence’ they can represent; but

also, in this way, the adaptive model is only weakly connected to

the delivery engine, and can therefore be easily replaced with

other alternative approaches of machine intelligence

representation, such as fuzzy logics, neural networks, etc. In this

way, the artificial intelligence part of the AH systems is clearly

delimited and defined, and plug-and-play technology becomes

applicable. Existing educational hypermedia can therefore be

reused in new, adaptive & intelligent ways – however more

research is necessary for establishing the requirements of merging

at both syntactic and semantic levels.

6. ACKNOWLEDGMENTS
This work is supported by the NLnet Foundation and by the

ADAPT project (101144-CP-1-2002-NL-MINERVA-MPP).

7. REFERENCES
[1] Abdullah, N. A. and Davis, H. C. Is Simple Sequencing

Simple Adaptive Hypermedia?. In Proceedings of Hypertext
2003, Nottingham, 172-173.

[2] AHA!. http://aha.win.tue.nl.

[3] ADL, SCORM,
http://www.adlnet.org/index.cfm?fuseaction=scormabt

[4] ARIADNE, Foundation for the European Knowledge Pool,
http://www.ariadne-eu.org/

[5] Berlanga, A. and Garcia, F.J., Towards Reusable Adaptive
Rules, Workshop on AH and Collaborative Web-based
Systems, ICWE’04.

[6] Brusilovsky, P. Adaptive hypermedia. User Modeling and
User Adapted Interaction, 11(1/2), (2001), 87-110.

[7] Carro, R.M., Moriyón, R., Pulido, E. and Rodríguez, P.
(1999): Teaching Tasks in an Adaptive Learning

Environment. In: HCI Communication, Cooperation and
Application Design, Eds: Bullinger, H. and Ziegler, J., Vol 2,
740-744.

[8] Cesarini, M., Monga , M., Tedesco, R. Carrying on the e-
learning process with a workflow management engine,
Proceedings of the 2004 ACM symposium on Applied
computing, March 14-17, 2004, Nicosia, Cyprus.

[9] Coffield, F., Learning Styles and Pedagody in post-16
learning: A systematic and critical review. Learning & Skills
research centre. http://www.lsda.org.uk/files/pdf/1543.pdf

[10] Conlan, O., Lewis, D. Higel, S., O'Sullivan, D. and Wade,
V., Applying Adaptive Hypermedia Techniques to Semantic
Web Service Composition Twelfth International World Wide
Web Conference, Budapest, Hungary, May 20, 2003.

[11] Cristea, A and Cristea, P. Evaluation of Adaptive
Hypermedia Authoring Patterns During a Socrates
Programme Class, Journal of Advanced Technology for
Learning, 1(2), ACTA Press, 2004.

[12] Cristea, A.I., and Calvi, L. The three Layers of Adaptation
Granularity. UM’03. Springer.

[13] Cristea, A., De Mooij, A. LAOS: Layered WWW AHS
Authoring Model and its corresponding Algebraic Operators.
In Proceedings of WWW’03, Alternate Education track.
(Budapest, Hungary 20-24 May 2003). ACM.

[14] Dagger, D., Developing Adaptive Pedagogy with the
Adaptive Course Construction Toolkit (ACCT), Second
International Workshop on Authoring of Adaptive and
Adaptable Educational Hypermedia, AH’04,
http://wwwis.win.tue.nl/~acristea/AH04/workshopAH.htm

[15] De Bra, P., Aerts, A., Rousseau, B., Concept Relationship
Types for AHA! 2.0, Proceedings of the AACE ELearn'2002
conference, Montréal, Canada, 2002, 1386-1389.

[16] de La Passardiere, B. & Dufresne, A.: Adaptive navigational
tools for educational hypermedia. In: Tomek, I. (ed.)
Computer Assisted Learning. Springer-Verlag, Berlin,1992,
555-567.

[17] Dolog, P., Henze, N., Nejdl, W. and Sintek, M. The Personal
Reader: Personalizing and Enriching Learning Resources
using Semantic Web Technologies, In AH 2004.

[18] Dublin Core Metadate Initiative. http://dublincore.org

[19] EML http://eml.ou.nl/eml-ou-nl.htm

[20] Felder, R.M. & Soloman, B.A. (2000). Learning styles and
strategies.http://www2.ncsu.edu/unity/lockers/users
/f/felder/public/ILSdir/styles.html

[21] IEEE P1484.2/D7, 20000-11-28. Draft Standard for
Learning Technology. Public and Private Information (PAPI)
for Learners (Papi Learner). http://ltsc.ieee.org/wg2/

[22] IEEE 1484.12.1-2002.1Standard for Learning Object
Metadata http://ltsc.ieee.org/wg12/

[23] IMS. IMS LIP (Learner Information Specification).
http://www.imsproject.org/profiles/index.cfm

[24] IMS Global Learning Consortium.“IMS Learning Design
Information Model” (IMS-LD), version 1.0 Final
Specification,20 january 2003.
http://www.imsproject.org/learningdesign/index.cfm

[25] IMS Global Learning Consortium, “Simple Sequencing
Protocol”, Version 1.0 Final Specification, March 2003,
http://www.imsglobal.org/simplesequencing/index.cfm

[26] iWeaver. http://www.adaptive-
learning.net/media/html/iWeaver.htm

[27] Kravcik, M. and Specht, M. “Authoring Adaptive Courses –
ALE Approach”, 1st International workshop on Adaptive and
adaptable Authoring, In: Proc. of the WBE 2004 Conference,
Innsbruck, Austria, February 2004.

[28] Moore, A.; Brailsford, T.J & Stewart, C.D. (2001).
Personally tailored teaching in WHURLE using conditional
transclusion. Short Paper, 12th ACM Hypertext Conference.
Arhus, Denmark, August 14-18, 2001.

[29] MOT. http://wwwis.win.tue.nl/~acristea/mot.html.

[30] Object Management Group.http://www.omg.org

[31] Peters A. M.. Languages learning strategies: Does the whole
equal the sum of the parts? Language (1977), 53, 560-573.

[32] Riding, R.J. & Buckle, C.F. Learning styles and training
performance (Sheffield: Training Agency, 1990).

[33] Specht, M. and Klemke, R.: ALE- Adaptive Learning
Environment. WebNet 2001, 1155-1160.

[34] Stash, N., Cristea, A., De Bra, P. Authoring of Learning
Styles in Adaptive Hypermedia: Problems and Solutions. In
Proceedings of WWW’04, Alternate Education track. (New
York, US 17-22 May 2004). ACM.

[35] Stash, N., De Bra, P., Incorporating Cognitive Styles in
AHA! (The Adaptive Hypermedia Architecture), 1st
International workshop on Adaptive and adaptable
Authoring, WBE’04, Innsbruck, Austria, February 16-18,
2004, 378-383.

[36] Stash, N., Cristea, A., De Bra, P., Empirical Evaluation of a
New Adaptation Language for Learning Styles, Intelligence-
based Adaptation for Ubiquitous Multimedia
Communications, Special issue of the Journal of Network
and Computer Applications (to be submitted).

[37] Triantafillou, E., Pomportsis. A, and Georgiadou, E. AES-
CS: Adaptive Educational System base on cognitive styles.
In AH2002 Workshop (Malaga, Spain, 2002), 10-20.

[38] Vantroys, T and Peter, Y. COW, a Flexible Platform for the
Enactment of Learning Scenarios. In. J. Favela and D.
Decouchant (eds.) CRIWG 2003, Springer, LNCS 2806,
168-182.

[39] W3C.XML Protocol specification.
http://www.w3.org/2000/xp/.

[40] W3C Semantic Web. http://www.w3.org/2001/sw/

[41] Witkin, H.A., Moore, C.A., Goodenough, D.R. & Cox, P.W.
Field-dependent and field-independent cognitive styles and
their educational implications, Review of Educational
Research, 47(1), 1977, 1-64.

[42] Wu, H. A. Reference Architecture for Adaptive Hypermedia
Applications, doctoral thesis, Eindhoven University of
Technology, The Netherlands, ISBN 90-386-0572-2, 2002.

