

 Int. J. Cont. Engineering Education and Life-Long Learning, Vol. 17, Nos. 4/5, 2007 319

 Copyright © 2007 Inderscience Enterprises Ltd.

Adaptation languages as vehicles of explicit
intelligence in Adaptive Hypermedia

Natalia Stash*
Faculty of Mathematics and Computer Science,
Eindhoven University of Technology,
Postbus 513, 5600 MB Eindhoven, The Netherlands
E-mail: nstash@win.tue.nl
*Corresponding author

Alexandra I. Cristea
Department of Computer Science,
University of Warwick,
Coventry CV4 7AL, UK
E-mail: acristea@dcs.warwick.ac.uk

Paul De Bra
Faculty of Mathematics and Computer Science,
Eindhoven University of Technology,
Postbus 513, 5600 MB Eindhoven, The Netherlands
E-mail: debra@win.tue.nl

Abstract: This paper deals with a new challenge in Adaptive Hypermedia
(AH) and web-based systems: finding the adaptation language to express,
independently from the domain model or platform, the intelligent, adaptive
behaviour of personalised web courseware. The major requirements for the
ideal language are: reuse, flexibility, high level semantics, and ease of use.
To draw closer to this ideal language, we compare two such language
proposals: LAG, a generic adaptation language, and a new XML adaptation
language for Learning Styles (LS) in AHA!, LAG-XLS.

Keywords: plug-and-play intelligence; learning styles; LS; user modelling;
adaptive hypermedia; AH; authoring of Adaptive Hypermedia.

Reference to this paper should be made as follows: Stash, N., Cristea, A.I.
and De Bra, P. (2007) ‘Adaptation languages as vehicles of explicit
intelligence in Adaptive Hypermedia’, Int. J. Continuing Engineering
Education and Life-Long Learning, Vol. 17, Nos. 4/5, pp.319–336.

Biographical notes: N. Stash received her PhD from the Eindhoven University
of Technology (TU/e), The Netherlands. She is currently a researcher in
the CHIP project (Cultural Heritage Information Personalisation) between
the Rijksmuseum (Amsterdam), TU/e and Telematica Institute (Enschede).
Her research interests include AH, semantic web technologies, LS.

 320 N. Stash, A.I. Cristea and P. De Bra

A.I. Cristea received her PhD from UEC, Tokyo, Japan and is currently an
Associate Professor at University of Warwick, where she heads the Intelligent
and Adaptive Systems group. Her research interests include AH and
authoring, UM, semantic web, NN, AI, ITS, web-based educational systems.
She co-authored over 100 papers and co-chaired workshops on AH authoring.

P. De Bra is a full Professor at TU/e; he heads the Database and
Hypermedia group. He is one of the pioneers of AH, and is (co-)author of over
100 publications on databases, hypermedia, web-technology and adaptive
systems. He organised numerous workshops on AH and was PC chair of the
AH conference, Malagà, 2002 and general chair, Eindhoven, 2004.

1 Adaptation language as an intermediate platform

1.1 Benefits on an intermediate platform
Creation and authoring of adaptive, ‘intelligent’ courseware can be a cumbersome
process (Cristea and de Mooij, 2003). To create a personalised, rich learning experience
for each user, not only the actual content of the lesson has to be prepared, but much more.
Catering for different user needs means creating (labelled) alternatives of the same
content, which ensures multiple paths through that content. This content organisation is
often called in the AH literature the creation of the Domain Model (Wu, 2002). Adaptive
dynamics design also embraces specifications of what the user expected. Often, this is
done in the form of user attributes, specified in what is usually called a User Model (UM)
(Brusilovsky, 2001). Moreover, in the educational field there is a serious need for a
separate Pedagogical Model (Dagger, 2004), which establishes adaptation and interaction
types for the different kind of learners, according to pedagogic strategies (Coffield et al.,
2004). Finally, machine constraints have to be considered, via, e.g., a Presentation Model
(Cristea and Mooij, 2003). All these are connected via an Adaptation Model (Wu, 2002).
Therefore, authoring of personalised courseware can be a difficult and costly process.
There are different ways of striving towards alleviating what can be called the ‘authoring
problem’. Two ways of dealing with it are:

• To consider the difficulty of the first-time authoring process unavoidable and to
concentrate on improving reuse capabilities. In this way, the cost could be reduced
by reuse of previously created material.

• To lighten the authoring burden, by moving away from the platform dependent
authoring style, common especially in AH, towards platform independent authoring.

In this paper we concentrate on the first solution, reuse. The solving of one issue
actually offers solutions of the second, but in this paper, this issue is not
followed-up. The reusable items can be the static parts of the authored courseware
(such as the content of the domain model) and the actual dynamics. Most of existing
standards address only static reuse. Examples of such e-learning standards are: Learning
resources: metadata: IEEE-LOM (Learning Object Metadata) (IEEE-LOM, 2002),
Dublin Core (http://dublincore.org), ADL-SCORM (Reusable learning content
as ‘instructional objects’, http://www.adlnet.org/index.cfm?fuseaction=scormabt); Data
exchange: IMS-Content Packaging (CP) IMS-CPS, Data formats: IMS-QTI (Question

 Adaptation languages as vehicles of explicit intelligence 321

and Test Interoperability), Education Modelling Languages (http://eml.ou.nl/eml-ou-nl.
htm), learning paths specifications: IMS-LD (Learning Design) (IMS-LD, 2003).

This paper looks instead of the static reuse at what we consider the most challenging
and difficult task for the reuse topic: reuse of intelligent, adaptive behaviour.
The approach taken here is to look at defining Adaptation Languages, as vehicles for the
intelligent behaviour of the AH. This would be equivalent to exchanging not only the
ingredients, but the recipes as well. This extraction and separate expression of
semantically relevant, reusable, explicit ‘artificial intelligence’ of AH systems can also
feedback to AH systems as analyser of the level of ‘intelligence’ they can provide.
As requirements we enforce that the adaptation behaviour described by the adaptation
languages should be reusable and the language extensible – the latter as it may be
necessary to be able to create new strategies that need the addition of new elements.
Ideally, the language should use or extend the emerging web standards, which will
enhance reusability and compatibility with current implementations.

1.2 Elements of course dynamics in AH

In order to extract the main elements of personalised, intelligent course dynamics, we
work on a concrete case of representing personalisation based on LSs. We have chosen
LS in order to show possible adaptation to some higher-level traits rather than just the
properties of the subject domain. LS and their effects on learning have been examined
most carefully in Coffield et al. (2004) and Holodnaya (2002). These reviews show that
there is no commonly accepted point of view on the usefulness or effectiveness of LS
application in learning environments. However, firstly, we consider that it is good for the
learner to be aware of his LS, in order to know what his strengths and weaknesses are.
Secondly, experiments that do not show any significant difference in individuals’
performance for matched vs. mismatched LS are usually done on skilled learners. Other
experiments show that less skilled learners perform better in LS-matched conditions.
Thirdly, researchers suggest that mismatching can be advantageous, as it allows
individuals to develop new skills, by forcing them to adopt unfamiliar techniques.
Therefore we conclude that LS-based strategies are useful in a variety of situations and
combinations thereof. Hence we consider that it is important to provide authors,
instructors and learners with various instructional strategies (Coffield et al., 2004),
including LS-based ones.

Our review of research on and application of LS in AH (Stash et al., 2004) shows that
existing systems can provide adaptation to the learner in terms of content adaptation
(Brusilovsky, 2001), navigation paths (Brusilovsky, 2001) or usage of multiple
navigational tools (de La Passardiere and Dufresne, 1992). These adaptation types
limit the possible response of the system to accommodate the different LS.
The most frequently used elements of instructional strategies we have found in Adaptive
Web-based Education literature are

• Selection of media items to accommodate different learner preferences; this can also
be extended to different LS. For instance, the same information (or the same
concept) can be presented in various ways, by using alternative media types
(Brusilovsky, 2001) – audio, video, image, text, etc. Depending on the learner’s
style a certain item (or group of items) may be included into the final presentation.
E.g., in LS terms, we can say that verbalisers (Riding and Buckle, 1990), who

 322 N. Stash, A.I. Cristea and P. De Bra

prefer textual information, may be presented with text and possibly spoken audio;
whilst imagers, who prefer pictorial information, can be shown images, diagrams,
graphs, charts or other items about the same concept (Riding and Rayner, 1995).
The selection process can be applied not only to media items, but also to other types
of items.

• Ordering information or providing different navigation paths. The order in which
information items are processed can be based on learner needs. E.g., some learners
prefer to learn things by doing something actively first whilst others prefer to collect
data first (corresponding to the active and reflective LS, respectively). Moreover,
some learners tend to learn through a linear, step-by-step, logical and systematic
process, whilst others want to see the big picture before they tackle the details
(corresponding, respectively, to sequential and global LS (Felder and Soloman,
2000)).

• Providing learners with navigational support tools. Depending on the learner
preferences, different learning tools can be provided. In terms of catering for LS,
for example, field-dependent (Witkin et al., 1977) learners can be provided with a
concept map, graphic path indicator, advanced organiser, etc., in order to help them
organise the structure of the knowledge domain. Alternatively, field-independent
learners might be provided with a control option showing a menu from which they
can choose to proceed with the application in any order (Triantafillou et al., 2002).

There are fewer systems which attempt to provide, along with various instructional
strategies, some mechanisms for inferring the learner’s preferences based on his/her
actions and selections. For example, MANIC (Stern and Woolf, 2000) uses a Naïve
Bayes Classifier to reason about the learner’s preferences in terms of explanations,
examples and graphics.

1.3 A view on adaptive learning strategies

To distinguish between the different types of strategies, we need, beside the previous list
of elements of instructional strategies, a high-level classification based on their overall
semantics. From the analysis of the literature, we extract a classification based
application range, as follows

• Instructional strategies – Define how the adaptation is performed. Namely the
adaptation rules specified in the strategy are used to adjust the presentation to the
learner with a particular learning preference (Berlanga and Garcia, 2003), style
(Stash et al., 2006) or need (Brusilovsky, 2001). We argue that it is very important to
provide several instructional strategies for an application so that the learners or tutors
can select the most appropriate.

• Instructional meta-strategies – inference or monitoring strategies – are applied in
order to infer the learner’s preferences during his/her interaction with the system
(Stash et al., 2004, 2006). These strategies can not completely replace the existing
psychological LS questionnaires; however they can be used as a simplified,
unobtrusive way to infer the learner preferences corresponding to these styles via
their browsing behaviour.

 Adaptation languages as vehicles of explicit intelligence 323

The first type of strategy is more common, but the second type is novel and requires
some clarification. A meta-strategy can, for example, track the learner’s preferences by
observing his/her interactions with the system (Stash et al., 2006). It can track some
repetitive patterns in the learner’s behaviour, like accessing particular types of
information (if a choice is available). It can observe that the user has a preference for
textual information, which is typical for a learner with verbaliser style, or, on the
contrary, that the user has a preference for the pictorial representations (imagers or
visualisers). It can also trace the navigational paths: browsing through the learning
material in breadth-first order – typical for the learners with field-dependent or holist
style – vs. navigating in depth-first order, which might indicate a learner with analytic
style (Coffield et al., 2004). Meta-strategies of this type update some UM parameters that
can be used later on for selecting a particular instructional strategy. These parameters can
indicate what the system ‘thinks’ the learner’s preferences are. In most existing systems
that provide LS adaptation, information about LS and preferences is not updated during
the interaction. However, LS preferences might actually change, depending on various
circumstances (Coffield et al., 2004) (for instance on the mood, time of day, subject,
etc.). Meta-strategies could trace if the preferences specified by the learner when he
begins working with the system stay the same or change. In case the learner’s behaviour
is different than initially specified, a strategy corresponding to another LS might be
suggested. Other examples of UM parameters which can be influenced by the actions
specified in the meta-strategies are: level of difficulty of the material presented to the
learner, link colours, etc. These actions occur when the learner accesses the concepts of
an application. Therefore, an adaptive meta-strategy is a ‘strategy about strategies’,
that can switch, explicitly or implicitly, between adaptive strategies.

According to the type of adaptation provided, we can refine the classification of
adaptation strategies by analysing the external (interactive) actions occurring is shown in
Table 1.

Table 1 Refined classification of external actions in adaptive strategies

Selection
Showing the content of an item

Basic actions on items

Showing a link to an item
Actions on child items Hierarchical actions on items
Actions on parent item
Ordering Actions on groups of items (e.g., siblings)
Performing ‘actions on items’ on each group item

Actions on the overall environment Changing the layout of the presentation

These are actions, which directly determine changes in what the users sees.
Similar to meta-strategies, instructional strategies also perform internal actions (mainly
UM updates). These actions can be classified according to traditional UM classification
and are therefore not further explained here.

In the following, we will show how we have used our analysis of the state of the art
and of the standards as well as an existing adaptation language, LAG, to create a new
language, based on web technologies.

 324 N. Stash, A.I. Cristea and P. De Bra

2 LAG: model, language and implementation

The LAG model is a specification of the Adaptation Model, as defined by the LAOS
model (Cristea and Mooij, 2003). LAOS is a generic model for authoring of AH,
detailing a Domain Model, a UM, and a Goal and Constraints Model (which becomes the
Pedagogical Model for educational applications), a Presentation Model (dealing with the
different machine-oriented ways of presenting the same information: e.g., different
colours, formats, etc.) and an Adaptation Model. For the purpose of this paper, we only
focus on the Adaptation Model, the sub-model that allows reuse of dynamics, as opposed
to current standards which are mainly focused on static material reuse. The Adaptation
Model is the one representing the Artificial Intelligence component of the Adaptive
System.

2.1 LAG model and language: review

To enable reuse of dynamics in personalisation and adaptation, the adaptation model used
was a 3-layer model, LAG (Cristea and Calvi, 2004). The details are skipped. In short,
LAG consists of an Adaptation Assembly Language, corresponding to the typical
IF-THEN rules in AH; at intermediate level, of a semantic Adaptation Language; and at
the highest level, of Adaptive Strategies or Adaptive Procedures. These strategies/
procedures1 are containers for the adaptation program (which details, in machine readable
adaptation language, how the adaptation is performed). In addition, each strategy has a
description (semantic label) in natural language, which can be directly used by authors to
select a specific, ready-made strategy for their course. In this way, course content
creation and the creation of adaptation dynamics for that course are kept separate, and
can be performed by differently specialised authors (roles), at different times.

As an instantiation of the Adaptation Language in the LAG model, the LAG
Language (Cristea and Calvi, 2004) was introduced. This language uses for syntax the
LAG grammar (Figure 1), and is the basis of an Intermediate Platform specification for
adaptation dynamics. Concretely, the LAG Language provides the building blocks for the
creation of Adaptation Strategies. Figure 1 shows the new, extended version of the LAG
grammar, improved after authoring usability tests (Cristea and Cristea, 2004), as well as
conversion and reuse tests (into two delivery systems, AHA! (http://aha.win.tue.nl) and
WHURLE (Moore et al., 2001)).

Figure 1 The extended LAG grammar

 Adaptation languages as vehicles of explicit intelligence 325

The figure describes the components of an adaptive strategy prog. Each strategy has four
main parts: description, variable declarations, initialisation and implementation.
The description is a comment for the human reader (the author who has to decide if to
apply this strategy). The variables are a new addition, to prevent overlaps and clashes if
multiple strategies are applied on the same course. The two phases, of initialisation and
implementation, are also new. The initialisation should set all the variables in use during
the strategy, before the actual interaction of the strategy with the user (learner) occurs.
It also establishes what learning items have to be shown to the user from the very
beginning. The implementation part contains the user interaction and activity description.
Initialisation and implementation are built from statements. These building blocks are the
basis of the current version of the LAG language. The adaptation language also allows
assembly language statements, such as IF-THEN statements. However, it also contains
more general programming statements, such as WHILE, FOR, and BREAK statements,
and comments. The most specific statements are the SPECIALIZE and GENERALIZE
statements, that allow the user to go down, or up the learning item hierarchy
respectively – depending upon the fulfillment of certain conditions. These statements use
the structure of the learning material, therefore have greater semantics for authors
familiar with the learning material. The conditions are either prerequisites, or
combinations of ENOUGH prerequisites. The value in the latter construct is a number,
establishing how many of the prerequisites have to be fulfilled.2 In such a way, more
complex AND-OR combinations of conditions can be obtained.

The details of the grammar have been simplified a little. However, it is important to
remark that the ATTRIBUTES used in initialisations, actions and comparisons can be of
two main types: GENERIC or SPECIFIC. The specific attributes refer to an instance of
the learning material, whereas the generic attributes refer to materials of a given type.
Therefore, strategies can be written general enough to be able to be applied to any given
set of learning materials, instead of belonging to a specific course.

From the strategy classifications in Section 1.3, LAG can create both strategies and
meta-strategies, as shown in the following section. From the point of view of actions,
LAG supports selection, showing of content of an item, hierarchical actions, actions on
groups (except for ordering) and actions on the overall environment. Ordering is part of
the Goal and Constraints Model in LAOS, and links to items can only be displayed if they
are represented in the Domain or Goal and Constraints Models.

2.2 (Authoring of) Learning Styles (LS) with LAG

The LAG grammar was used as a basis of the MOT-adapt interface (Moore et al., 2001).
This interface is depicted in Figures 2 and 3.

Figure 2 shows an adaptive strategy written in LAG for the Verbalisers vs. Imagers
LS. The strategy specifies that verbalisers are presented with more textual information,
whilst imagers receive more graphic information, such as pictures, diagrams, charts.
The value of the VERBvsIM attribute is an integer between 0 and 100. A value between
30 and 70 indicates an unknown LS or a learner with no strong preference. Values above
70 indicate a verbaliser, values below 30 indicate an imager. The strategy is simplified
and uses IF-THEN constructs only, to enable easy comparison with the LAG-XLS
language presented in Section 3. Showing the content of an item in LAG is via action
statements: ‘PM.Concept.item=true’;3 e.g., ‘PM.Concept.image = true’ means ‘show an
image’. UM attributes are similar: ‘UM.Concept.VERBvsIM <30’ means that the user is

 326 N. Stash, A.I. Cristea and P. De Bra

considered an imager. The strategy is detailed for imagers only, the other case being
symmetrical.

Figure 2 The LAG grammar: imager strategy

Figure 3 LAG grammar: imager vs. textual meta-strategy (extract)

Figure 3 shows an example of an adaptive meta-strategy written based on LAG, which
detects which type of concepts the user has preference for: images or text, then modifies
the UM accordingly. The adaptation language constructs and variables are similar to the
ones in Figure 2.

 Adaptation languages as vehicles of explicit intelligence 327

Concluding, we can say that LAG allows reusable dynamic representations at
different levels: at adaptation language level, by reusing the language constructs, and at
adaptation strategy level, by reusing adaptive procedures as new language constructs, but
also by reusing whole adaptive strategies (by applying them to different domain maps
and user maps, or exporting them to other systems).

3 LAG-XLS: a new XML Learning Style (LS) adaptation language

LAG-XLS started with the purpose of taking over these advantages of dynamic reuse,
whilst adding new research results, summarised in the review on the most frequently used
instructional methods to support LS (presented in Section 1.2). LAG-XLS instantiates
the Adaptation Language layer of the LAG model as well, but with different goals.
In LAG-XLS we try to express the first two methods: selection of media items
(or selection of a particular type of information in general) and ordering information – in
a simple and straightforward manner. Moreover, the refined classification of actions in
Table 1 is applied directly. We have based LAG-XLS on the LAG language, and have
tried to alleviate some of its problems, whilst at the same time simplifying parts of it.
This is based on our desire to identify more specific language constructs aimed at LS
strategies, as well as at being completely AHA! compatible. We initially decided
to create an XML based language, with the aim of aligning it with semantic web
research (http://www.w3.org/2001/sw/). Reusability is achieved in LAG-XLS by
specifying each strategy as a separate XML file. XML (EXtensible Markup Language
(http://www.w3.org/2000/xp/)) is a cross-platform, software and hardware independent
tool for representing and transmitting data. XML elements for learning adaptive strategies
are not yet defined in the literature, so we endeavoured to invent and describe our own
elements.

LAG-XLS bases selection and ordering of concepts on the attributes and values of
their sub-concepts,4 as follows. The names of the attributes and their values indicate how
these sub-concepts represent the parent concept. For instance, if the media attribute is
audio, the sub-concept will represent an audio version of the concept. Another goal was
that of expressing monitoring strategies. To achieve this, the adaptation language for
AHA! contains elements specifying UM updates.

The resulting LAG-XLS language, corresponding to various strategies (extracted
from what was previously implemented in ‘adaptation assembly’ form only, but also
from literature review, and informed by the refined classification in Table 1) is presented
in Figure 4. The meaning of the DTD elements and attributes is explained below.

• strategy: is the root element of a file corresponding to a strategy, attribute name – the
name of the strategy

• description: is the strategy meaning; e.g., the corresponding learner model for which
this strategy has been created

• if: a statement to specify if-then-else rules (currently we have only if statements
within the strategy element, however we are thinking about applying other
statements as well, like for, while, etc., as in LAG)

• condition: appears within an if statement; a Boolean expression which can contain
user-related information; e.g., about the user’s LS

 328 N. Stash, A.I. Cristea and P. De Bra

• then: defines actions to be performed when the condition is satisfied

• else: an element defining an alternative set of actions.

The following elements are used to define how the adaptation is performed:

• select: selecting a concept representation from a number of existing ones to be
included into the final presentation

• sort: sequencing different concept representations depending on the user’s LS, and
reordering them from most to least relevant.

Figure 4 LAG-XLS DTD

The ‘select’ and ‘sort’ elements have an attribute ‘attributeName’. The value is provided
by the author depending on the aspects of the concepts he wants to include or reorder in
the final presentation. For example, we have a concept which has several children
representing it via different types of media. All the children concepts have an attribute
‘media’. The value of this attribute for different concepts can be ‘audio’, ‘video’, ‘text’,
‘image’, etc. In the final presentation for various strategies (links to) media items
can be explicitly included or not; similarly (links to) media items can be ordered in
different ways:

• showLink: showing a link to the concept representation

• showContent: showing the content of the concept representation

• showDefaultContent: showing a default content specified by the author when no
other representation is found for a particular concept

• action: specifies how the UM is updated; attribute UMupdate shows whether it is an
absolute or relative update

 Adaptation languages as vehicles of explicit intelligence 329

• UMvariable: indicates which UM variable should be updated, namely which
attribute of which concept

• expression: is the value used for UM update.

To exemplify the use of LAG-XLS, we follow the previous example from Section 2.2,
and write a strategy for the verbaliser vs. imager LS. Due to of lack of space we present
only the part of the XML file corresponding to the imager LS. To indicate that the user is
either a verbaliser or imager we use a similar UM attribute as in the LAG example,
Section 2.2, ‘VERBvsIM’, for the AHA! ‘personal’ concept.5 In AHA! the LSs related
attributes of this concept can be initialised via the registration form. The strategy in
Figure 5 uses the XML adaptation language elements: description, select, showContent,
showLink. It also uses traditional AH elements such as IF-THEN constructs. The meaning
of the strategy is that if the user is an imager (personal.VERBvsIM <30)6 then, for each
concept which can be represented by different media types,7 an ‘image’ representation is
included in the presentation. If no ‘image’ representation exists, then the default
representation provided by the author is used. The author can specify that links to other
concept representations are included. In Figure 5 a link to a textual representation is
inserted using the ‘showLink’ element.

Figure 5 Strategy of verbaliser vs. imager

Next, we present a short example of an instructional meta-strategy, corresponding to the
LAG meta-strategy in Figure 3. Here, the author specifies actions which are performed
when the user accesses an AHA! concept (like increasing or decreasing the confidence of
the system that the learner has a particular LS). We present only the part of the
XML file indicating a decrease in the system’s confidence that the user is a verbaliser
(and an increase in the confidence that (s)he is an imager). In this strategy we use
two new AHA! variables: personal.VERBvsIM.initial and personal.traceTextvsImage.
These can be added by the author and initialised through the registration form. The first
variable stores the initial value of the ‘VERBvsIM’ attribute. The second variable
indicates whether the user wants the system to infer his preferences. For example, the

 330 N. Stash, A.I. Cristea and P. De Bra

user does not know his LS and wants the system to trace it. He might still let the system
trace it even if he explicitly specified his LS. Whilst tracing, personal.traceTextvsImage
is set to true. During the actual learner-system interaction, the user’s repetitive accesses
to pictorial representations increase the system’s confidence that the user is a imager,
indicated by the expression var:–5. Var means that the value can be changed by the
author while applying the strategy to a particular application. In the strategy in
Figure 6, the default is –5. The system traces the user’s behaviour until the value of
‘VERBvsIM’ reaches a meaningful threshold (30 or 70); then the value of the attribute
personal.traceTextvsImage will be set to false and tracing will stop. Afterwards, an
instructional strategy corresponding to the new value of the ‘VERBvsIM’ will be
suggested to the user.

Figure 6 Meta-strategy of verbaliser vs. imager

If the learner is not satisfied with an instructional strategy he can always inspect his UM
and make necessary corrections. AHA! provides a tool that allows authors to create forms
to let the learners change values of attributes of concepts in their UM. It is thus possible
to create a form that lets a learner change their ‘VERBvsIM’ value.

This is an example of an XML adaptation strategy which can be reused by various
authors. For their own applications, authors might create different versions of the
verbaliser vs. imager strategy or the strategy for tracing the learner’s preference for
textual or pictorial information. They could use a different attribute of different type
indicating the user’s style (instead of ‘VERBvsIM’); they might also specify a different
range of values for the attribute and different kinds of adaptation using ‘showLink’,
‘showContent’ elements. They could specify as well a different set of actions for
inferring the learner’s preferences, limited only by the DTD.

LAG-XLS allows authors to apply generic adaptation rules. Moreover, the default
values of the parameters in each rule can be replaced by the author.

Similarly to the LAG adaptation language, LAG-XLS can deal with specific as well
as generic concepts. The examples presented so far only show dealing with generic
concepts, specified by the variable ‘concept’. While applying the strategy to an
application, this name will be replaced with the specific concept names. Specific concepts
can also be directly used in strategies: NameSpecificConcept.Attribute = Value.

Currently, a user friendly authoring tool for LAG-XLS is under development.
It will allow authors to create strategies using the predefined set of elements
(specified in the DTD). Authors should first use this tool to create adaptive

 Adaptation languages as vehicles of explicit intelligence 331

strategies – resulting in a separate server-side XML file for each strategy. Skilled authors
could also manually create or edit XML files corresponding to strategies, as shown in the
examples. The created files will be stored into the author’s private directory. A set of
‘standard’ strategies, reusable by all authors, is available and will be extended. If authors
want to let others use some of their strategies, they would have to add them to the list of
standard strategies.

4 Applying LAG-XLS to AHA!

To visualise strategies not only from the author’s, but also from the delivery (learner’s)
point of view, we show how the Figure 5 strategy ‘VerbaliserVersusImager’ is converted
for AHA! The author can create the Domain and Adaptation model for AHA! courses
using a high-level authoring tool called Graph Author (De Bra et al., 2002). A new option
added to it allows authors to choose which strategies to apply to a particular course, and
in which order (when applying several strategies, order can be important). Authors might
need to rewrite some information (e.g., parameters specified with ‘var’). Otherwise,
default values are applied. During saving, the AHA! concept relationships graph is
translated into AHA! low-level (assembly) adaptation rules. Applied strategies may
influence desirability of concepts and actions to be performed when concepts are
accessed. Additional application pages (in XHTML format) might also be generated.

The ‘VerbaliserVersusImager’ strategy is applied to all AHA! concepts in the given
course which have sub-concepts with an attribute ‘media’. This has as effect the display
of the content of the appropriate sub-concept, depending on the value of the ‘media’
attribute (‘image’, ‘default’ or ‘text’), and a link to inappropriate sub-concepts. For the
imager an ‘image’ should be included into the presentation. If an ‘image’ is not found
then the system will look for a ‘default’. As inappropriate sub-concepts are added as
links, the learner can still follow a link to a ‘text’.

In Figure 7 we show a simplified part of the parent concept structure after application
of a strategy. This parent concept represents the conversion of an AHA! concept from the
LAG-XLS language (Figure 6) to the AHA! low-level assembly language, which the
AHA! system can deliver. It shows that the ‘VERBvsIM’ attribute value of the concept
‘personal’ influences the ‘showability’ attribute, which in turn determines the fragment
displayed. Files generatedfile2.xhtml and generatedfile3.xhtml are needed because of
some extra steps in the conversion. The ‘text’ concept is an AHA! object concept.
Resources associated with this type of concept can only be seen if included into pages.
Therefore, a new page resource file (e.g., generatedfile1.xhtml) that includes it has to be
created, representing a viewable version of the ‘text’ concept, as follows:

<!DOCTYPE html SYSTEM ‘/aha/AHAstandard/xhtml1-strict.dtd’>

<html xmlns=‘ttp://www.w3.org/1999/xhtml’><body>

<object name=‘objectText’ type=‘aha/text’/></body></html>

The goal of this resource file is to add a header wrapper to the AHA! object concept.
The resource file uses an ‘object’ tag for conditional inclusion of objects. The specified
type ‘aha/text’ does not mean that the object is a text; it can be any media item.
It is used only as an indication that the object should be processed by the AHA!
engine. Afterwards, a resource representing the AHA! parent concept has to be also

 332 N. Stash, A.I. Cristea and P. De Bra

generated – a page resource, if the AHA! parent concept is a page concept; or a fragment,
if it is an object concept. The first case is that of adaptive link destinations: i.e., when the
learner follows a link to a parent concept, the displayed content varies with the UM state.
Therefore, the same link to a concept will point to different resources, depending on the
UM. The second case results in adaptation of the content. This happens if the parent
concept is a part of some other page. This page will contain different contents, depending
again on the UM.

Figure 7 Example part of the generated structure for the AHA! concept

5 Empirical evaluation of LAG and LAG-XLS

Both LAG and LAG-XLS have been tested in practice with students. LAG has been
tested in three different settings, in a 2004 Computer Science (CS) regular curriculum
course on AH, in a 2005 User-System Interaction (USI) 2-week course on Adaptive
Systems and User Modelling for Master Students, both at TU/e, and at a 1-week summer
school course on Authoring of AH at Joensuu University, Finland. LAG-XLS has been
tested during the CS course. For all settings, the students had to work both as authors and
end-users of the AH material. For the LAG evaluations, students were asked to fill in
SUS questionnaires and a generic questionnaire on a Likert scale. For LAG-XLS, they
had a generic questionnaire to fill in, as well as the Felder-Solomon “Index of Learning
Styles Questionnaire” (Felder and Soloman, 2000). Due to lack of space, these results are
not detailed here. In general, students reacted positively to the idea of generic adaptation
languages, the freedom of applying different intelligent strategies, LS, etc., easily on the
same or different course material. However, they also expressed some dissatisfaction
with some of the implementation and installation issues of the programs they worked
with. In the LAG language case, these issues were taken into consideration directly, and

 Adaptation languages as vehicles of explicit intelligence 333

different generations of students experienced different stages of the project. For the
LAG-XLS case, students considered the experiment of creating adaptation strategies
based on LS, and then comparing them to their own, pleasant, but not that easy. It is also
noteworthy to say that students from CS, for instance, preferred creating their own
strategies and declared so in the questionnaires, but USI students preferred reusing
strategies created by others. This shows that this approach of allowing authors with
different abilities access to adaptivity at different levels (some as re-users and others as
creators) is a valid one.

6 Discussion and conclusion

Before we conclude on the two adaptive languages extracting artificial intelligence
features of AH, as described in this paper, we first analyse the few comparable
approaches found in the literature. Recently, similar attempts at defining a reusable
representation for the system ‘intelligence’ and dynamics of web-based adaptive
education environments have been researched and can be classified into the following
categories, as follows

• Adaptation languages. In Berlanga and Garcia (2003), the authors define adaptive
rules based on a collection of sets employing the IMS Learning Design (IMS-LD,
2003). These rules are only at the level of assembly language of adaptation
(according to the classification in Cristea and Calvi (2004)), i.e., IF-THEN rules,
but are enriched with extra semantics. For this, they use semantically labelled actions
(such as show, hide, show-menu, sort-ascending, number-to-select, etc.). One
problem with this approach is that it mixes the user adaptation (such as some
material being not recommendable for a user) with the actual presentation of this
adaptation (hide it from user). This problem is inherited from the strict adherence to
the IMS-LD standard, which does not make this distinction. In the AH literature
(Brusilovsky, 2001), however, the presentation of an item which is undesirable can
vary from hiding to colour-code marking (e.g., ‘Red’ is undesirable). This type of
presentation depends on the degree of control the learner can have within the
learning environment. Moreover, the IMS-LD standard is especially aimed at
collaboration, and not at personalisation.

• Workflow models. The COW platform in Vantroys and Peter (2003) as well as the
WFMS in Cesarini et al. (2004) use workflow modelling for dynamics
representation. However, in COW no personalisation or adaptation is envisioned.
WFMS has a form of non-flexible adaptation, comparable with the conditional
fragment inclusion technique in early AH (Brusilovsky, 2001).

• Task composition models. In Carro et al. (1999), tasks are modelled and alternative
paths are created via AND and OR relations. This alternation seems to be more
dynamic than the Simple Sequencing Protocol (2003). The problem is that the
language used for task definition is very domain dependent.

LAG has already addressed many of these problems, as it is a higher level language that
allows for an increased level of semantics. User adaptation and presentation are kept
separate. The adaptivity degree allowed is extremely flexible (adjustable) and the
language is not domain dependent. LAG has been evaluated in real life settings

 334 N. Stash, A.I. Cristea and P. De Bra

(Cristea and Cristea, 2004). One important drawback is that it does not reflect the current
web-standards.

The newly proposed LAG-XLS adaptation language aims at alleviating this last
problem, as it is based on XML which is a W3C standard. The language is extensible and
its XML syntax ensures web-readability and the capacity to export to different systems.
LAG-XLS has also been evaluated in real life settings and the results reported in
Stash et al. (2006). The focus of the new language is however slightly different from
LAG, which is a more generic adaptation language. LAG-XLS specifically targets users’
LS and the adaptive strategies corresponding to them, restricted by the DTD definitions
and based on the action definitions in Table 1.

Currently we have defined and are experimenting in LAG-XLS with a number
of instructional strategies other than the one represented in this paper, such as
Active vs. Reflective, Auditory vs. Visual, Holist vs. Analytic, Field-Dependent
vs. Field-Independent, Verbal vs. Visual learners as well as other monitoring
meta-strategies, like inferring preferences for textual or pictorial information or reading
in breadth- or depth-first order. We are thinking about other types of strategies the
authors might need for their adaptive applications and the extension of the adaptation
language to allow more complex rules and evaluate the usage of Web Ontology
Language (OWL).

Both LAG and LAG-XLS instantiate the LAG Model Adaptation Language.
This paper therefore demonstrates that separating the specific dynamics required for the
complex issue of LS adaptive response is possible, and therefore paves the way for
exportable adaptive strategies on a global scale and their integration into web standards.
We have demonstrated this by comparing two adaptation languages, starting with what
problems they solve, what their underlying model is, how they differ from other
approaches, and what are their positive and negative aspects. Moreover, by making the
‘intelligence’ in the AH systems explicit, not only can these AH systems be analysed as
to the extent of ‘intelligence’ they can represent; but also, in this way, the adaptive model
is only weakly connected to the delivery engine, and can therefore be easily replaced with
other alternative approaches of machine intelligence representation, such as fuzzy logics,
neural networks, etc. In this way, the artificial intelligence part of the AH systems is
clearly delimited and defined, and plug-and-play technology becomes applicable.
Existing educational hypermedia can therefore be reused in new, adaptive and intelligent
ways – however more research is necessary for establishing the requirements of merging
at both syntactic and semantic levels.

Acknowledgements

This work is performed within the PROLEARN network, and supported
previously by the NLnet Foundation, the Minerva ADAPT project (101144-CP-1-2002-
NL-MINERVA-MPP) and the Minerva ALS (Adaptive Learning spaces) project
(229714-CP-1-2006-1- NL-MPP).

 Adaptation languages as vehicles of explicit intelligence 335

References
Berlanga, A. and Garcia, F.J. (2003) ‘Towards reusable adaptive rules’, Workshop on AH and

Collaborative Web-based Systems, ICWE’04.
Brusilovsky, P. (2001) ‘Adaptive hypermedia’, User Modeling and User Adapted Interaction,

Vol. 11, Nos. 1–2, pp.87–110.
Carro, R.M., Moriyón, R., Pulido, E. and Rodríguez, P. (1999) ‘Teaching tasks in an adaptive

learning environment’, in Bullinger, H. and Ziegler, J. (Eds.): HCI Communication,
Cooperation and Application Design, Vol. 2, pp.740–744.

Cesarini, M., Monga, M. and Tedesco, R. (2004) ‘Carrying on the e-learning process with a
workflow management engine’, Proceedings of the 2004 ACM symposium on Applied
Computing, Nicosia, Cyprus, March 14–17.

Coffield, F., Moseley, D., Hall, E. and Ecclestone, K. (2004) Learning Styles and Pedagody
in Post-16 Learning: A Systematic and Critical Review, http://www.lsda.org.uk/files/
pdf/1543.pdf.

Cristea, A.I. and Calvi, L. (2004) ‘The three layers of adaptation granularity’, Proc. of the User
Modeling Conference UM2003, pp.4–14.

Cristea, A. and Cristea, P. (2004) ‘Evaluation of adaptive hypermedia authoring patterns during a
Socrates programme class’, Journal of Advanced Technology for Learning, ACTA Press,
Vol. 1, No. 2, pp.115–124.

Cristea, A. and de Mooij, A. (2003) ‘LAOS: layered WWW AHS authoring model and its
corresponding algebraic operators’, Proceedings of WWW’03, Alternate Education Track,
Budapest, Hungary, ACM, 20–24 May.

Dagger, D. (2004) ‘Developing adaptive pedagogy with the Adaptive Course Construction Toolkit
(ACCT)’, 2nd International Workshop on A3EH, AH’04, http://wwwis.win.tue.nl/
~acristea/AH04/workshopAH.htm.

De Bra, P., Aerts, A. and Rousseau, B. (2002) ‘Concept relationship types for AHA! 2.0’,
Proceedings of AACE ELearn’2002 Conference, Montréal, Canada, pp.1386–1389.

de La Passardiere, B. and Dufresne, A. (1992) ‘Adaptive navigational tools for educational
hypermedia’, Computer Assisted Learning, Springer-Verlag, Berlin, pp.555–567.

Felder, R.M. and Soloman, B.A. (2000) Learning Styles and Strategies, http://www.engr.ncsu.edu/
learningstyles/ilsweb.html.

Holodnaya, M.A. (2002) Cognitive Styles: about the Nature of Individual Mind (in Russian)
Per Se, Moscow.

IEEE-LOM (2002) ‘IEEE-LOM 1484.12.1-2002.1’, Standard for Learning Object Metadata
http://ltsc.ieee.org/wg12/.

IMS Global Learning Consortium (2003) ‘Simple sequencing protocol’, Version 1.0 Final
Specification, March, http://www.imsglobal.org/simplesequencing/index.cfm.

IMS-LD (IMS Global Learning Consortium) (2003) ‘IMS learning design information model’,
(IMS-LD), Version 1.0 Final Specification, 20 January, http://www.imsproject.org/
learningdesign/index.cfm.

Moore, A., Brailsford, T.J. and Stewart, C.D. (2001) ‘Personally tailored teaching in WHURLE
using conditional transclusion’, Short Paper, 12th ACM Hypertext Conference, Arhus,
Denmark, August 14–18.

Riding, R.J. and Buckle, C.F. (1990) Learning Styles and Training Performance, Training Agency,
Sheffield.

Stash, N., Cristea, A. and De Bra, P. (2004) ‘Authoring of learning styles in adaptive hypermedia:
problems and solutions’, Proceedings of WWW’04, Alternate Education Track, ACM,
New York, USA, 17–22 May.

Stash, N., Cristea, A. and De Bra, P. (2006) ‘Learning styles adaptation language for adaptive
hypermedia’, Proceedings of AH’2006 Conference, Dublin, Ireland, pp.323–327.

 336 N. Stash, A.I. Cristea and P. De Bra

Stern, M. and Woolf, P. (2000) ‘Adaptive content in an online lecture system’, AH’00
Proceedings, Trento, Italy, pp.291–300.

Riding, R.J. and Rayner, S. (1995) ‘The information superhighway and individualized learning’,
Educational Psychology, Vol. 15, No. 4, pp.365–378.

Triantafillou, E., Pomportsis, A. and Georgiadou, E. (2002) ‘AES-CS: adaptive educational system
base on cognitive styles’, AH2002 Workshop, Malaga, Spain, pp.10–20.

Vantroys, T. and Peter, Y. (2003) ‘COW, a flexible platform for the enactment of learning
scenarios’, CRIWG 2003, Springer, LNCS 2806, pp.168–182.

Witkin, H.A., Moore, C.A., Goodenough, D.R. and Cox, P.W. (1977) ‘Field-dependent and
field-independent cognitive styles and their educational implications’, Review of Educational
Research, Vol. 47, No. 1, pp.1–64.

Wu, H.A. (2002) Reference Architecture for Adaptive Hypermedia Applications, Doctoral Thesis,
TU/e, The Netherlands, ISBN 90-386-0572-2.

Websites
ADL, SCORM, http://www.adlnet.org/index.cfm?fuseaction=scormabt.
AHA!, http://aha.win.tue.nl.
Dublin Core Metadate Initiative, http://dublincore.org.
EML, http://eml.ou.nl/eml-ou-nl.htm.
W3C Semantic Web, http://www.w3.org/2001/sw/.
W3C.XML Protocol specification, http://www.w3.org/2000/xp/.

Notes
1Procedures are new language constructs extending the language.
2The idea behind it is simple yet semantically significant: it is based on computer games, where a
player has to collect a number of items to advance between levels. This number may be fixed, but
the choice of which items to select is up to him.

3PM stands for Presentation Model in LAOS.
4In AHA! there can be different types of concepts, e.g., abstract, page or object (fragment)
concepts. Abstract concepts do not have a resource associated with it. Page concept can have one
or more associated resources. Fragment concepts should be included into pages; they can have
multiple resources, however they represent alternative versions of a part of a page.
These resources are well-formed documents, to be scanned by the AHA! engine for other
recursively included objects. Therefore they do not have a header and cannot be viewed
separately.

5A pseudo-concept created when a user first logs into the system, storing user information such as
name, login, password. As all concepts in AHA!, it can have arbitrary attributes. It can be used to
specify attributes reflecting the learning style.

6The ‘strange’ escape sequences & > and < in the XML file are needed because the
XML parser will translate them to &, > and <. Without the escaping the XML parser would
interpret, instead of translating them.

7Children of this concept have an attribute ‘media’.

