
Subgroup Discovery meets Bayesian networks –
an Exceptional Model Mining approach

Wouter Duivesteijn, Arno Knobbe
LIACS

Leiden University
The Netherlands
wouterd@liacs.nl

Ad Feelders, Matthijs van Leeuwen
ICS

Utrecht University
The Netherlands

Abstract—Whenever a dataset has multiple discrete target
variables, we want our algorithms to consider not only the
variables themselves, but also the interdependencies between
them. We propose to use these interdependencies to quantify
the quality of subgroups, by integrating Bayesian networks
with the Exceptional Model Mining framework. Within this
framework, candidate subgroups are generated. For each can-
didate, we fit a Bayesian network on the target variables. Then
we compare the network’s structure to the structure of the
Bayesian network fitted on the whole dataset. To perform this
comparison, we define an edit distance-based distance metric
that is appropriate for Bayesian networks. We show interesting
subgroups that we experimentally found with our method
on datasets from music theory, semantic scene classification,
biology and zoogeography.

Keywords-Exceptional Model Mining, Subgroup Discovery,
Bayesian networks

I. INTRODUCTION

Exceptional Model Mining (EMM) [1] is a framework that
extends traditional Subgroup Discovery. Given a single tar-
get variable and a dataset, Subgroup Discovery is concerned
with finding subsets of the data where the distribution of the
target variable is substantially different from its distribution
on the whole dataset. EMM extends this notion to targets that
are models of some sort; we try to find subsets of the data
where a model fitted on the subset is substantially different
from that model fitted on the whole dataset.

In this paper, we perform EMM on data with a number
of discrete target variables. The interdependencies between
these variables are modeled by a Bayesian network. The
method we introduce strives to find subgroups that balance
two properties. On the one hand, we seek subgroups that
have a high degree to which the interdependencies between
targets in the subgroup differ from those in the whole data.
To quantify this degree, we define a distance metric on
Bayesian networks, loosely based on edit distance [2]. On
the other hand, we seek subgroups with a size that is not
extreme: subgroups that consist of only a few data points or
cover nearly the whole dataset are not interesting.

One possible application of our method is in the field of
multi-label classification (MLC) [3]. MLC is a generaliza-

tion of traditional classification: each instance is allowed to
be a member of precisely one class in classification, but
any number of classes in MLC. When viewing MLC as an
example of our method, the presence or absence of a certain
label corresponds to one target variable. Notice however that
the scope of the proposed method is wider: the targets need
not at all be labels attached to a data point.

To illustrate the use of interdependencies in a Bayesian
network as a relatively complex target concept, we consider
the research performed by Robert T. Paine in 1963 and 1964
in Makah Bay, Washington [4]. It concerns the carnivore
starfish Pisaster ochraceus whose presence kept a marine
ecosystem consisting of 15 species stable. In this system,
the sponge Haliclona was browsed upon by the nudibranch
Anisodoris. When Pisaster was artificially removed, the
bivalve Mytilus californianus and the barnacles Balanus
glandula and Mitella polymerus rapidly grew and crowded
out other species. In total, only 8 species remained. Also,
the sponge-nudibranch food chain was displaced, and the
anemone population was reduced in density. When present,
Pisaster does not eat either of these carnivores or the sponge.

Paine remarks that the food chains are strongly influenced
by Pisaster, but by an indirect process. When dealing with a
dataset detailing the presence of individual species, existing
methods can probably detect simple patterns in the ecosys-
tem, such as the growth of Mytilus, Balanus and Mitella and
the decline in the number of species when Pisaster is re-
moved. However, the more indirect influence of Pisaster on
processes such as a food chain it is not direcly related to, like
the one between Haliclona and Anisodoris, cannot be found
by looking at single species or even correlations between
pairs of species: the (in-)dependence between Haliclona
and Anisodoris is conditional on the presence of Pisaster.
Our Bayesian network approach enables the consideration
of conditional dependencies, thus making detection possible
of indirect processes that can be captured with a Bayesian
network. For instance, in the marine biology example we
can find a subgroup defined by environmental parameters
in which complex food chains are displaced. The ability to
cope with Bayesian networks makes our method applicable



to datasets not only from marine ecosystems, but also from
such diverse fields as traffic accident reconstruction [5],
medical expert systems [6], and financial operational risk
[7].

The main contributions of this paper are the definition
of a tractable distance metric on the structures of Bayesian
networks with the same set of vertices, and an Exceptional
Model Mining method for finding interesting subgroups that
explicitly employs the interdependencies between discrete
variables. We specifically discuss the computational com-
plexity of our metric, since in any EMM process a large
number of candidate subsets of the data is considered, and it
is hence essential that the methods that we integrate with the
EMM process do not impose a heavy computational burden.

This paper is organized as follows. We introduce required
notation in Section II. In Section II-A the EMM framework
is reiterated. Section III contains our novel method to apply
the EMM framework to data with multiple discrete target
variables. In Section IV we discuss experimental results with
several multi-target datasets. Section V concludes the paper
with a summary, and some pointers for further research.

II. PRELIMINARIES

Throughout this paper, we assume a dataset D with
elements (data points) −→x ∈ D of the form −→x =
{a1, . . . , ak, t1, . . . , tm}, where k and m are positive inte-
gers. The set {a1, . . . , ak} is denoted by −→a , which we call
the vector of attributes of −→x , and the set {t1, . . . , tm} is
denoted by

−→
t , which we call the vector of targets of −→x .

Each target ti is assumed to be discrete, and each vector of
attributes is taken from an unspecified domain A. We refer
to the ith data point by

−→
xi , its attributes by

−→
ai , and its jth

target by tij . We omit the superscript if no confusion can
arise. The size of the dataset is denoted by N = |D|.

For our definition of subgroups we need to define patterns.
These are functions p : A → {0, 1}. A pattern p covers a
data point

−→
xi if and only if p

(−→
ai
)

= 1.

Definition (Subgroup). A subgroup corresponding to a pat-
tern p is the bag of data points Gp ⊆ D that p covers:

Gp =
{−→
xi ∈ D

∣∣∣ p(−→ai ) = 1
}

From now on we omit the p if no confusion can arise,
and refer to a subgroup as G. We write n for the size of G.

In order to objectively evaluate a candidate pattern in a
given dataset, we need to define a quality measure. For each
pattern p in the pattern language P , this function measures
how interesting the model is that we induce on Gp.

Definition (Quality Measure). A quality measure is a
function ϕD : P → R that assigns a unique numeric value
to a pattern p, given a dataset D.

A. EMM revisited

Exceptional Model Mining [1] is a data mining frame-
work that can be seen as an extension of the Subgroup
Discovery (SD) framework. SD strives to find patterns
that satisfy certain user-specified constraints. Usually these
constraints include lower bounds on the quality of the pattern
(ϕ(p) ≥ lb1) and size of the induced subgroup (n ≥ lb2).
More constraints may be imposed as the question at hand
requires; domain experts may for instance request an upper
bound on the complexity of the pattern. Most common SD
algorithms traverse (we consider the exact search strategy
to be a parameter of the algorithm) the search space of
candidate patterns in a general-to-specific way: they treat the
space as a lattice whose structure is defined by a refinement
operator ρ : P → 2P . This operator determines how patterns
can be extended into more complex patterns by atomic
additions. Most applications (including ours) assume ρ to
be a specialization operator: ∀ ps ∈ ρ(pg) : pg � ps (i.e.
ps is more specialized than pg). The algorithm results in a
ranked list of patterns (or the corresponding subgroups) that
satisfy the user-defined constraints.

In traditional SD m = 1, i.e. there is only a single
target variable. Hence, the typical quality measure contains
a component indicating how different the distribution over
the target variable in the subgroup is, compared to its
distribution in the whole dataset. Since unusual distributions
are easily achieved in small subsets of the dataset, the typical
quality measure also contains a component indicating the
size of the subgroup. Thus, whether a pattern is deemed
interesting depends on both its exceptionality and the size
of the corresponding subgroup.

EMM can now be seen as an extension of SD. Rather than
the regular single target variable, EMM uses a more complex
target concept. For each subgroup under consideration, we
induce a model on the targets t1, . . . , tm. Then quality
measures are defined that indicate how exceptional the
model fitted on the targets in the subgroup is, compared
to the model fitted on the targets in the whole dataset.
For example, [1] proposes quality measures for correlation
models, a linear regression model, and classification models.

In the EMM setting, usually the beam search strategy
[8] is chosen, which performs a level-wise search. On each
level, the best w patterns according to our quality measure
ϕ are selected, and refined to create the candidate patterns
for the next level. The search is constrained by an upper
bound on the complexity of the pattern and a lower bound
on the support of the corresponding subgroup. This search
strategy combines the advantages of a greedy method with
those of the implicit parallel search: as on each level w
alternatives are considered, the search process is less likely
to end up in a local optimum than a pure greedy approach,
but the selection of the w best patterns at each level keeps
the process focused and thus more tractable.



III. EMM IN DATA WITH MULTIPLE DISCRETE TARGET
VARIABLES

In this section, we introduce our approach to use data
with multiple discrete target variables in an EMM setting.
In such data we ideally would look beyond the targets them-
selves, and take the interdependencies between the targets
into account. We propose to use these interdependencies
in the validation of the subgroups. In order to do so, the
interdependencies need to be modeled first. We do this by
fitting a Bayesian network on the target variables.

A. Bayesian networks

A Bayesian network [9] is a directed acyclic graph (DAG)
that represents a set of random variables and the interaction
effects that hold between them. Each random variable is
represented by a vertex in the graph, and the edges model
the independence relations between the variables by d-
separation: two variable x and y are conditionally indepen-
dent given a set of variables Z if x and y are d-separated
relative to Z. For details on d-separation, see [9].
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Figure 1. Example Bayesian networks

For instance, in network (a) in Figure 1, there is no path
from z to x, so z and x are conditionally independent given
y. This is the only independence relation in this network.

There are two important peculiarities about the inde-
pendence relations in Bayesian networks. First, different
Bayesian networks may represent the same independence
relations. If we look at network (b), we find that in this
network only one independence relation holds: x and z
are conditionally independent given y. By symmetry of
conditional independence, this is the same independence
relation as the one in network (a). Bayesian networks that
represent the same independence relations are called equiv-
alent. Note that this relation partitions Bayesian networks

into equivalence classes. Second, Bayesian networks with
the same skeleton (the network when we drop the directions)
are not necessarily equivalent. In network (c), for example,
x and z are marginally independent, unlike in networks (a)
and (b).

We identify a special configuration of vertices and edges
in a Bayesian network that is relevant for the discussion in
the rest of this paper. It is a structure as seen in network (c):
a v-structure.

Definition (V-structure). A v-structure in a Bayesian net-
work is a set of three vertices {x, y, z} such that the network
contains edges x → y and z → y, but no edge between x
and z.

The probabilistic interpretation of this v-structure is that x
and z are marginally independent, but conditionally depen-
dent given y. V-structures are also known as immoralities,
since the parents of vertex y are unmarried, i.e. there is
no edge between them. A graph can be moralized [10]
by first marrying all unmarried parents (i.e. draw an edge
between all pairs of vertices that have a common child
but no common edge), and then dropping directions. Thus,
moralizing a graph removes all v-structures. The moralized
versions of the networks of Figure 1 are depicted in Figure 2.
As you can see, the moralized version of network (c) has an
extra edge, which corresponds to removing the v-structure
in the original network.
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Figure 2. Moralized graphs for the networks in Figure 1

Notice that the moral graph also is not sufficient to
capture all information about the underlying independency
relations; x and z are marginally independent in network c
and marginally dependent in network d, but these networks
have the same moral graph.



B. Fitting a Bayesian network on data

There are many algorithms to learn a DAG model from
data, see for instance [11]–[13]. We use a non-deterministic
hill climbing algorithm; using a hill climbing method makes
the algorithm speedy enough for use in an EMM setting,
while its non-deterministic nature decreases the chance that
the algorithm will end up in a local optimum.

We start with a Bayesian network with m vertices and no
edges, and compute the quality of that model. We choose
the Bayesian Dirichlet equivalent uniform (BDeu) score
(see [14]), because it assigns equal scores to equivalent
models and assumes no prior information. Then we hill
climb through the space of Bayesian networks by applying
the best single-edge change in the model. At each step, we
apply a random number of covered arc reversals [15], in
order to escape from a maximum that may be local. For
more details on this combination of methods, see [16].

Notice that this process is quite non-deterministic: at every
step in the hill climbing, and whenever we try to escape a
maximum, a random number of randomly selected covered
edges is reversed. During our experiments we occasionally
found different Bayesian networks for the same data with
different random seeds. However, these changes were not
very dramatic: few edges change, and almost all resulting
networks for the same data are equivalent.

C. Quality Measure

We use the algorithm from the previous subsection to fit
a Bayesian network on the target variables restricted to the
whole dataset, and restricted to candidate subgroups. Now
we would like to compare the structure of these networks, in
order to find the subgroups in which the interdependencies
between the targets differ the most from those in the whole
dataset; the exceptional models. An obvious candidate for
such a comparison is edit distance [2].

Definition (Traditional edit distance). The edit distance
between two given graphs G1 = (V,E1) and G2 = (V,E2)
is the minimal number of edges we need to add to, remove
from and reverse in E1 to obtain E2.

Edit distance is a common way to measure the distance
between two DAGs. However, it is obvious that this does not
directly translate to a sensible distance measure for Bayesian
networks: as we have seen in Subsection III-A, networks a
and b are equivalent, but the traditional edit distance between
them is 2 instead of the desired 0. Hence, to make a suitable
quality measure out of edit distance, we need to take into
account the equivalence classes.

We could theoretically solve this problem via the essential
graph [17], a partially directed, partially undirected graph
that is the same for all equivalent DAGs. The essential
graph of a DAG is the graph wherein we keep all directed
edges that are the same in the whole equivalence class, and
drop the directions of the other edges. Essential graphs can

be calculated in polynomial time [17]. Unfortunately, the
algorithm Andersson et al. describe takes O

(
m6
)

time. By
implementing the innovation from Chickering [18] this can
be improved to O

(
m5
)
, but this is still too expensive to

be used in EMM, and to our knowledge no faster algorithm
exists. Instead, we propose a heuristic based on the following
well-known result by Verma and Pearl [19]:

Theorem 1 (Equivalent DAGs). Two DAGs are equivalent
if and only if they have the same skeleton and the same
v-structures.

Since these two conditions determine whether two DAGs
are equivalent, it makes sense to consider the number of
differences in skeletons and v-structures as a measure of
how different two DAGs are.

Definition (Edit distance for Bayesian networks). Let
two Bayesian networks BN1 and BN2 be given with the
same set of vertices whose size we denote by m. Denote
the edge set of their skeletons by S1 and S2, and the edge
set of their moralized graphs by M1 and M2. Let

` =
∣∣∣[S1 ⊕ S2] ∪ [M1 ⊕M2]

∣∣∣
The distance between BN1 and BN2 is defined as:

d(BN1, BN2) =
2`

m(m− 1)
As usual in set theory, ⊕ denotes an exclusive disjunction:

X ⊕ Y = (X ∪ Y ) − (X ∩ Y ). The factor 2
m(m−1) causes

the distance to range between 0 and 1: it is the expanded
reciprocal of

(
m
2

)
, the number of distinct pairs of vertices.

Notice that this distance only considers the network struc-
tures, not the underlying probability distributions; Leman
et al. [1] have previously discussed a variant of EMM
that assigns exceptionality to a subgroup by looking at
those distributions. As a consequence, our distance does not
distinguish between e.g. different signs of correlation: if an
edge corresponds to a positive correlation in one network
and to a negative correlation in another network, then this
edge does not contribute to the distance.

We illustrate the edit distance by computing the mutual
distances between the networks in Figure 1. We find that
d(a, b) = 0 and d(a, c) = d(a, d) = d(b, c) = d(b, d) =
d(c, d) = 1/3. Only for the two networks that are equivalent,
distance 0 is obtained. If we compare the networks to the
independence model i which has no edges at all, we obtain
d(a, i) = d(b, i) = 2/3, and d(c, i) = d(d, i) = 1.

This distance can now be used to quantify the exception-
ality of a subgroup:

Definition (Edit distance based quality measure). Let a
pattern p be given. Denote the Bayesian network we fit on
D by BND, and denote the Bayesian network we fit on Gp

by BNp. Then the quality of p is:

ϕed(p) = d (BND, BNp)



If we would plug ϕed into the EMM framework, a
problem similar to the problem with quality measures in
traditional Subgroup Discovery would occur: unusual in-
terdependencies between the targets are easily achieved in
very small subsets of the dataset. Thus, using ϕed would
result in small subgroups. For this reason, we introduce an
alternative measure that includes the size of the subgroup in
the evaluation. We use the entropy of the split between the
subgroup and the rest of the dataset to capture this [1].

Definition (Entropy).

ϕent(p) = − n
N

lg
( n
N

)
− N − n

N
lg
(
N − n
N

)
Here, lg is the binary logarithm. The entropy captures the

information content of the split. It favours balanced splits
over skewed splits, and is again normalized to return 0 and
1 for the extreme cases (subgroup being empty or covering
the whole dataset, and 50/50 splits, respectively).

Because we do not want to find subgroups that have a
low quality value on either the edit distance or the entropy
measure, we make an aggregated measure.

Definition (Weighed Entropy and Edit Distance).

ϕweed(p) =
√
ϕent(p) · ϕed(p)

The original components ranged from 0 to 1, hence the
new quality measure does so too. We take the square root
of the entropy, thus reducing its bias towards 50/50 splits,
since we are primarily interested in a subgroup with large
edit distance, while mediocre entropy is acceptable.

In Section IV, we will focus on results obtained with
ϕweed. In addition, we illustrate the different results we can
obtain with ϕed on one dataset.

D. Computational complexity of ϕed

Since computing the quality of a given subgroup is a
frequently occuring operation in EMM implementations,
it is essential that the quality measure can be computed
efficiently. In this subsection we will analyse the complexity
of the calculation of ϕed (and thus of ϕweed).

Let two Bayesian networks BND and BNp be given. It
is straightforward to obtain the skeletons of the networks
in quadratic time. The number ` can also be determined in
quadratic time if we have the skeletons and the moralized
graphs, and after that the quality measure value is one
elementary operation away. All that remains to be done is
obtain the moralized graphs.

Moralized graphs can be obtained from a DAG in a
straightforward manner by identifying all v-structures, draw-
ing the resulting edges and dropping directions. The last two
of these steps can be done in quadratic time, but since there
can be a quadratic amount of v-structures in a DAG, and we
need to visit every vertex at least once to identify them, this
first step obviously costs O

(
m3
)

time. Hence so does ϕed.

IV. EXPERIMENTS

In this section, we illustrate the usefulness of our new
quality measure by finding exceptional models in several
real-life datasets. We use an implementation of the EMM
process that is strongly based on the Safarii Data Mining
system [20]. The implementation was tailored to cope specif-
ically with the complex target concepts needed in our EMM
implementation. A run of the modified Safarii system returns
all subgroups found, ranked according to ϕweed or ϕed.

For the beam search process, we pick the following
parameters. On each level, we select the w = 10 best
subgroups, and refine these to create the candidate subgroups
for the next level. This beam-width w was intentionally
set to a modest value, in order to discourage too much
redundancy in the reported subgroups, and to achieve a
reasonable efficiency. If we want to refine a subgroup by
adding a constraint on a numeric attribute, we partition that
attribute into 8 equal-sized intervals, and then we consider
inequalities on these dynamically allocated split points as the
refining constraints. After some initial experimentation with
different search depths, the maximum subgroup complexity
was set to d = 2, i.e. a search of two levels. A larger value
for d has proven to produce subgroups with irrelevant extra
conditions that do not provide any benefit compared to the
level 1 and 2 results. We will illustrate this effect in the
presentation of the results on our first dataset.

After the main mining phase, we post-process the best
t subgroups. To reduce the non-deterministic effects we
outlined in Section III-B, we fit 20 Bayesian networks on
the whole dataset and 20 Bayesian networks on each of
the t subgroups, and assign to each subgroup as its final
quality the average of the 400 resulting quality values. The
effect of this post-processing is to update the quality of the
t most promising subgroups to a more reliable value, and
thus slightly rearranging the order of the top subgroups. For
our experiments, t was set to 100, in order to guarantee that
at least the top subgroups considered will be extensively
evaluated. The number t can be easily set to larger values,
were one so inclined.

To the best of our knowledge, validation of found patterns
in subgroup discovery (hence also in EMM) is an open
problem. The most common method is domain-specific
interpretation of the resulting subgroups. This has the ob-
vious drawbacks that it is subjective, and largely depends
on human intuition with respect to the domain at hand:
validation through this method regarding mammals that
are spread over a certain geographical location will be
more convincing to most humans than validation regarding
probes in a phylogenetic profile. To somewhat alleviate these
drawbacks, we validate each subgroup not only by domain-
specific interpretation, but additionaly by showing that its
exceptionality is not merely caused by random effects in
the data. We do this in two ways. On the one hand, we



generate 100 random subsets of the data with the same
size as the subgroup under inspection. We compute the
quality of each random subset, and test whether the found
subgroup quality is significantly higher than the qualities of
these 100 randomly generated subsets. On the other hand,
we generate 100 random patterns with the same length as
the subgroup, that is, the random patterns consist of the
same number of conditions as the subgroup. Furthermore,
patterns were generated such that n ≥ lb2 (by discarding
and recomputing patterns with too low a support). Then we
do the same test on the quality of the found subgroup and
the qualities of the subgroups corresponding to these random
patterns. The idea here is that, rather than comparing our
subgroup with entirely random subsets, it might be more fair
to compare with random entities whose structure is similar
to the structure of our subgroup.

A. Datasets

The method outlined in this paper is designed for data
with multiple discrete target variables. An obvious instance
of such data is multi-labeled data. Recently, Cheng and
Hüllermeier published a paper [21] containing an overview
of seven benchmark multi-labeled datasets, of which we
selected three from different domains for our experiments.

The emotions dataset [22] consists of 593 songs, from
which 8 rhythmic and 64 timbre features were extracted.
Domain experts assigned the songs to any number of six
main emotional clusters: amazed-surprised, happy-pleased,
relaxing-calm, quiet-still, sad-lonely, and angry-fearful.

The scene dataset [23] is from the semantic scene classi-
fication domain, in which a photo can be classified into one
or more of 6 classes. It contains 2407 photos, each of which
is divided in 49 blocks using a 7 × 7 grid. For each block
the first two spatial color moments of each band of the LUV
color space are computed. This space identifies a color by
its lightness (the L* band) and two chromatic valences (the
u* and v* band). The photos can have the classes beach,
field, fall foliage, mountain, sunset, and urban.

From the biological field we consider the yeast dataset
[24]. It consists of micro-array expression data and phylo-
genetic profiles with 2417 genes of the yeast Saccharomyces
cerevisiae. Each gene is annotated with any number of 14
functional classes.

The MLC datasets all have a relatively small number
of targets. Hence the fitted Bayesian networks are easy to
interpret, and experiments on these datasets form a nice

Table I
DATASET STATISTICS

Dataset Domain N k m Cardinality
Emotions Music 593 72 6 1.87
Mammals Zoogeography 2221 69 101 24.43
Scene Vision 2407 294 6 1.07
Yeast Biology 2417 103 14 4.24
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Figure 3. Bayesian networks for the emotions data

proof of concept for our method. However, the method is
designed for larger, more complex target systems. Hence,
in addition to the MLC datasets, we analyse the mammals
dataset [25], [26]. It focuses on subdividing the geography
of Europe into clusters based on their fauna, which is a core
activity of biology. The dataset was created by combining
two datasets: one documenting presence or absence of 101
mammals for a set of 2221 grid cells covering Europe, and
one documenting climate and elevation of the corresponding
land areas. We define candidate subgroups by conditions on
the climate and elevation data, and fit Bayesian networks
on the mammals. We use a version of this dataset that was
pre-processed by Heikinheimo et al. [27].

Some statistics regarding these datasets can be found in
Table I. The column Cardinality displays the average number
of positive targets per record.

B. Results

On the emotions dataset, we obtained the networks shown
in Figure 3. Figure 3a depicts a network fitted on the
whole dataset, and Figure 3b displays a network fitted
on a subgroup of size 94 corresponding to the conditions
STD MFCC 7 ≤ 0.203 and Mean Centroid ≥ 0.066,
with quality ϕweed = 0.675. The first condition says that
coefficient 7 of the 13-band Mel Frequency Cepstrum has a
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low standard deviation, i.e. there is little variation in one of
the middle spectrum bands. The second condition says that
the songs in the subgroup have a moderate to high mean
spectral centroid. This correlates with the impression of a
bright sound [28].

From Figure 3a we find that on the whole dataset, the
emotion sad-lonely is correlated with all other emotions: it
shares marginal dependency relations with happy-pleased,
relaxing-calm and quiet-still, and conditional dependency
relations given both relaxing-calm and quiet-still with angry-
fearful and amazed-surprised. When restricted to the sub-
group, sad-lonely is correlated with none of the other
emotions (cf. Figure 3b). This seems reasonable: we would
expect that bright sounds in music have a great influence
on whether humans perceive a song as sad-lonely or not.
Hence for songs with bright sounds it is more likely that
sad-lonely is less correlated with other factors (such as the
other emotions); we already have an explanation for the
distribution of sad-lonely, so the probability that it does not
depend on the other emotions increases.

The histogram of Figure 4a displays the qualities of 100
random subsets of the emotions data of size 94. These
qualities have a mean of 0.339 and a standard deviation of
0.060. The lighter bar represents the quality of the subgroup
we found, 0.675. The hypothesis that this value is generated
by the normal distribution fitted to the other 100 leads to a
p-value of 1.32 · 10−8.

We have summarized these random benchmark results in
Table II, together with the results for random patterns, and
the same results for the best subgroup on each following
dataset. In this table, the values for µ and σ are merely
reproduced to characterize the distributions from which the
relevant quantities, the p-values, are deduced.

To illustrate our choice for d = 2 as our maximum
subgroup complexity, we also ran our algorithm on the
emotions data with d = 3. The best subgroup we find is
the exact same subgroup we found with d = 2. The next
eleven subgroups in the ranking all share the two conditions
that define the best subgroup. They all have one extra
condition that removes at most eleven data points from the
group, which leads to a slight decrease in quality. One more
subgroup in the top 50 also shares these two conditions.
Two other combinations of first two conditions are shared
by respectively 14 and 21 subgroups in the top 50, which
leaves only two subgroups that are different. These fairly
homogeneous results show that running the algorithm with
d = 3 instead of d = 2 is quite pointless.

Figure 5a shows the network fitted on the whole scene
dataset. In this dataset, we found a subgroup with quality
ϕweed = 0.545 containing 452 data points. A network fitted
on the subgroup is shown in Figure 5b. The conditions

FieldBeach

MountainSunset

Urban
Foliage

Fall

(a) Whole dataset

Fall

Foliage
Urban

Sunset Mountain

Beach Field

(b) Mean L* band block 7 ≥ 0.699 and Mean
u* band block 19 ≤ 0.336

Figure 5. Bayesian networks for the scene data



(a) latitude ≥ 49.85 and prec feb ≥ 28.75
(n = 839)

(b) max temp nov ≤ 7.66 and prec feb ≤
45.38 (n = 835)

(c) max temp mar ≤ 7.97 and max temp sep
≤ 17.65 (n = 834)

Figure 6. Regions in Europe that belong to the subgroups

indicate a high mean lightness in the upper right corner block
of the photo, and a low mean u* chromatic valence in a more
centrally located block.

Figure 4b displays the histogram of the randomly gen-
erated subsets of size 452. For a statistical validation, see
again Table II.

The first-ranked subgroup on the yeast dataset, Gp1 , has
quality ϕweed(p1) = 0.437, and is defined by conditions on
its 79-element gene expression data: probe 3 ≤ −0.025 and
probe 66 ≥ −0.071. The next three subgroups in the ranking
each share their first condition with the top-ranked subgroup,
hence they are not that interesting to present here. The fifth-
ranked subgroup, Gp5 , has quality ϕweed(p5) = 0.369 and
conditions probe 9 ≤ −0.063 and probe 53 ≥ −0.081. The
subgroup sizes are |Gp1 | = 681 and |Gp5 | = 530.

From the fitted Bayesian networks, many changes in
dependence relations can be deduced; we will outline a
few. In Gp1 the functional class cell growth, cell division,
DNA synthesis has four dependence relations less than on
the whole dataset, and protein destination has five less. On
the other hand, energy and ionic homeostasis both have an
extra dependence relation. In Gp5 , the functional classes
cellular organization and cell rescue, defence, death and
aging have fewer dependence relations than on the whole
dataset (six and three, respectively), while metabolism and
cellular biogenesis have one more.

On the mammals dataset the first-ranked subgroup Gp1

is defined by conditions latitude ≥ 49.85 and prec feb
≥ 28.75, i.e. northern areas with a fair amount of precipi-
tation in February. Two other interesting subgroups (ranked
sixth and eighth) are defined by meteorological conditions
only. In subgroup Gp6 we have max temp nov ≤ 7.66
and prec feb ≤ 45.38, i.e. November is not warm and
precipitation in February is low, while in subgroup Gp8 we
have max temp mar ≤ 7.97 and max temp sep ≤ 17.65,

i.e. the temperatures in both March and September do
not reach high levels. The subgroups have quality measure
values ϕweed(p1) = 0.122, ϕweed(p6) = 0.121 = ϕweed(p8),
and sizes |Gp1 | = 839, |Gp6 | = 835 and |Gp8 | = 834.

Figure 6 shows the regions in Europe that belong to the
subgroups. Areas that are unique to one subgroup within
this set are Ireland and the Benelux for Gp1 (which had the
condition that it is wet in February), Romania and Poland
for Gp6 (cold in November, dry in February), and the Alps
and Pyrenees for Gp8 (cold in both March and September).

Among the relations between mammals that distinguish
the subgroups from each other and the whole dataset D
are the following: the European Water Vole (Arvicola ter-
restris) and the Mountain Hare (Lepus timidus) are con-
ditionally dependent given the Ermelin (Mustela erminea)
on D but not on any of the subgroups, only on Gp1 the
Wildcat (Felis silvestris) and the Beech Marten (Martes
foina) are conditionally dependent given the Western Roe
Deer (Capreolus capreolus), only on Gp6 the Broad-toothed
Field Mouse (Apodemus mysticanus) and the Lesser Mole
Rat (Nannospalax leucodon) are conditionally dependent
given the Marbled Polecat (Vormela peregusna), and only
on Gp8 the Red Squirrel (Sciurus vulgaris) and the Least
Weasel (Mustela nivalis) are conditionally dependent given
the European Badger (Meles meles).

In Section III-C we claimed that we needed the entropy
term in our quality measure to avoid obtaining small sub-
groups. To substantiate that claim, we also ran our algorithm
on the mammals dataset with ϕed instead of ϕweed. The
first ranked subgroup we found with this distance has size
105 and is defined by conditions mean temp apr ≥ 11.86
and mean temp aug ≤ 23.28. The regions in Europe that
belong to this subgroup are displayed in Figure 7. Notice
that although this group is smaller than those found with
ϕweed, it may still be interesting.



Table II
RANDOM BENCHMARK RESULTS OF BEST SUBGROUPS

Random subsets Random patterns
Dataset ϕweed(Gp1 ) µ σ p-value µ σ p-value

Emotions 0.675 0.339 0.060 1.32 · 10−8 0.302 0.114 5.48 · 10−4

Scene 0.545 0.263 0.065 6.07 · 10−6 0.319 0.085 0.004
Yeast 0.437 0.296 0.032 5.57 · 10−6 0.250 0.046 2.19 · 10−5

Mammals 0.122 0.072 0.005 1.43 · 10−21 0.094 0.017 0.043
Mammals (ϕed) 0.147 0.125 0.007 0.002 0.107 0.014 0.002

Considering again Table II, we note that the reported
subgroups have a significantly higher quality than randomly
generated subsets with the same size, and to a lesser extent
also a significantly higher quality than subsets corresponding
to random patterns. The positive comparison to random sub-
sets tells us that descriptive information in the attributes ai

concerning dependencies between targets is being exploited,
and furthermore, useful conditions are being found by the
search algorithm. The statistical validation using random
patterns is a more strict validation, as it eliminates the factor
of exploitation of −→a , and primarily validates whether the
measure-guided beam search is able to effectively select
high-quality subgroups. As such, the somewhat lower sig-
nificance levels are to be expected.

V. CONCLUSIONS AND FURTHER RESEARCH

We propose to use the interdependencies between discrete
target variables as an exceptionality measure for subgroups.
These interdependencies are modeled by Bayesian networks,
and the quality of a subgroup is defined as the difference
between the network on the whole dataset and the network
on the subgroup. To quantify this difference and thus the
exceptionality of the model, we define a distance metric
on Bayesian networks with the same vertex set. As a post-
processing step, the impact of the non-determinism in the
induction of Bayesian networks is reduced by repeated

Figure 7. Regions in Europe that belong to the subgroup corresponding
to mean temp apr ≥ 11.86 and mean temp aug ≤ 23.28 (n = 105)

modeling. Finally, statistical validation using both random
subsets and random patterns demonstrates that significant
findings in four domains can be made.

The work presented in this paper can be extended in vari-
ous ways. For instance, we could integrate our approach with
the approach presented by Leman et al., who determined
the exceptionality of a subgroup by comparing underlying
probability distributions using Hellinger distance [1], [29].
Considering the Bayesian network parameters, or merely the
signs of the correlations for ordered variables, could also
improve our method. Furthermore, if a faster way to find
the essential graph of a Bayesian network is found, we can
employ it to improve the quality measure we defined.

Also, the computational burden of the edit distance for
Bayesian networks may be alleviated. In Section III-D we
described how we can compute the distance in quadratic
time except for the bottleneck that costs O

(
m3
)

time:
determine all v-structures. However, this can be done by
matrix multiplication: detect the v-structures in a graph by
multiplying its incidence matrix with the incidence matrix
of the graph with all directions reversed. Hence, we could
improve our algorithm to O

(
m2.376

)
time by using the

Coppersmith-Winograd algorithm [30]. Unfortunately, the
implied constant term is so large that the algorithm be-
comes impractical. Still, the use of other algorithms such as
Strassen’s [31], which takesO

(
m2.807

)
, might be beneficial.

Perhaps the most promising direction in which this EMM
approach could be employed would be its use in the Local
Pattern Discovery phase in the LeGo framework [32]. As our
subgroups identify parts of the input space where exceptional
sets of dependencies hold, they can be thought of as a means
to simplify a given multi-label classification problem, by
allowing for different classification models in different sub-
groups. As subgroups may represent more coherent samples
of the data, compared to the whole database, it can be
expected that the LeGo building blocks can be employed
to improve predictive accuracy.
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