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ABSTRACT
Exceptional Model Mining (EMM) is an exploratory data
analysis technique that can be regarded as a generalization
of subgroup discovery. In EMM we look for subgroups of the
data for which a model fitted to the subgroup differs sub-
stantially from the same model fitted to the entire dataset.
In this paper we develop methods to mine for exceptional
regression models. We propose a measure for the exception-
ality of regression models (Cook’s distance), and explore the
possibilities to avoid having to fit the regression model to
each candidate subgroup. The algorithm is evaluated on a
number of real life datasets. These datasets are also used to
illustrate the results of the algorithm. We find interesting
subgroups with deviating models on datasets from several
different domains. We also show that under certain circum-
stances one can forego fitting regression models on up to 40%
of the subgroups, and these 40% are the relatively expensive
regression models to compute.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining

Keywords
Subgroup Discovery, Exceptional Model Mining, Linear Re-
gression, Cook’s Distance

1. INTRODUCTION
Exceptional Model Mining (EMM) [16, 8] is an exploratory

data analysis technique that can be regarded as a general-
ization of subgroup discovery. In subgroup discovery the
aim is to find subgroups of the data for which the distribu-
tion of a single target variable deviates from its distribution
in the entire dataset. In EMM we look for subgroups for
which a model fitted to the subgroup differs substantially
from the same model fitted to the entire dataset. This is a
general framework which can be used for different purposes,
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depending on the type of model that is fitted, and how one
measures the difference between models. In this paper we
focus on the “work horse” of data analysis: linear regression
models.

Let us consider an example to illustrate why the results of
such an analysis might be of interest. The economic law of
demand states that (all else equal) if the price of a product
increases, the demand for the product will decrease. In a
regression model this would result in a negative slope when
we regress demand on price. However, under specific condi-
tions, people tend to buy more of a product when the price
increases [13]. Hence, for those exceptional cases, we would
get a positive slope of the regression line. This idea was
first published in 1895 [17]. Over one hundred years later,
in 2008, this so-called Giffen behavior was for the first time
observed in a field experiment [13]. In certain theoretically
induced subsets (the poor, but not too poor) of households
in Hunan, China, demand for rice rose when the price in-
creased. The algorithm we propose is able to find such an
exceptional subgroup in the data automatically.

Testing whether the regression coefficients for two groups
are different is in fact common practice in applied regression
analysis. One common way of doing this is through the use
of dummy (i.e. binary) variables. Consider for example the
problem of predicting house prices. Suppose we know for
each house its selling price, lot size and whether or not it
has air conditioning. To test whether the effect of lot size
on selling price is different for houses with and without air
conditioning, one could estimate the model

Price = β0 + β1 × Lot Size + β2 ×Airco× Lot Size, (1)

where Airco=1 if the house has air conditioning and Airco=0
otherwise. If we consider these two cases separately we see
that the regression equation becomes

Price = β0 + β1 × Lot Size,

if Airco=0, and

Price = β0 + (β1 + β2)× Lot Size,

if Airco=1. Hence, to test whether these two groups of
houses have different slopes, we can test whether the coeffi-
cient estimate of β2 in model (1) is significant. In this setup
we have to decide in advance for which groups we want to
test whether they have different slopes in the regression.

The algorithm presented in this paper can be regarded as
a way of automatically finding the subgroups for which the
slopes are substantially different. The subgroup description
can be more complex than the simple condition in the above
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example: it can be a conjunction of conditions on categorical
and numeric variables as is common in subgroup discovery.
The fact that many textbooks on applied regression analy-
sis (see for example chapter 10 of [14]) devote considerable
attention to the problem of testing whether two regressions
(for different subgroups of the data) are different, underlines
the relevance of such questions in practical data analysis and
motivates our work. Essentially we embed an old regression
technique in a new Exceptional Model Mining setting, to
automate a traditional regression problem.

This paper is organized as follows. In Section 2 we in-
troduce some notation, discuss the basic EMM framework,
and present the combination of EMM and linear regression
models. In Section 3 we propose a quality measure for the
exceptionality of subgroups, which measures the distance
between the coefficient vector of the global model, and the
coefficient vector of the subgroup model. In this section we
also consider possibilities to limit the number of models that
have to be fitted on subgroups, by using bounds that can be
computed quite easily from the data and the global model.
In Section 4 we discuss the extent to which we can prune the
search space, while in Section 5 we illustrate the application
of our algorithm by analyzing a number of publicly available
real life datasets. Finally, Section 6 concludes.

2. PRELIMINARIES
Throughout this paper, we assume a dataset D to be a

bag of N records r ∈ D of the form

r = {a1, . . . , ak, x1, . . . , xp−1, y}

where k is a positive integer and p is an integer such that p ≥
2. We call a1, . . . , ak the attributes of r, and x1, . . . , xp−1, y
the targets of r. Each target is assumed to be numeric,
while the attributes are taken from an unrestricted domain
A. The requirement that the xi are numeric may seem very
restrictive, but in fact nominal variables can be handled in
the usual way by creating ”dummy” (binary) variables. We
refer to the ith record by ri.

For our definition of subgroups we need to define patterns.
These are functions P : A → {0, 1}. A pattern P covers a
data point ri if and only if P

(
ai
)

= 1.

Definition (Subgroup). A subgroup corresponding to a
pattern P is the bag of data points GP ⊆ D that P cov-
ers:

GP =
{
ri ∈ D

∣∣∣ P (ai) = 1
}

From now on we omit the P if no confusion can arise, and
refer to a subgroup as G.

In order to objectively evaluate a candidate pattern in a
given dataset, we need to define a quality measure. For each
pattern P in the pattern language P, this function measures
how interesting the model is that we induce on GP .

Definition (Quality Measure). A quality measure is a
function ϕD : P → R that assigns a unique numeric value
to a pattern P , given a dataset D.

2.1 EMM revisited
Exceptional Model Mining [16, 8] is a data mining frame-

work that can be seen as a generalization of the Subgroup
Discovery (SD) framework. SD strives to find patterns that

satisfy certain user-specified constraints. Usually these con-
straints include lower bounds on the quality of the pattern
(ϕ(P ) ≥ lb1) and size of the induced subgroup (|GP | ≥ lb2).
More constraints may be imposed as the question at hand
requires; domain experts may for instance request an up-
per bound on the complexity of the pattern. Most common
SD algorithms traverse1 the search space of candidate pat-
terns in a general-to-specific way: they treat the space as a
lattice whose structure is defined by a refinement operator
ρ : P → 2P . This operator determines how patterns can be
extended into more complex patterns by atomic additions.
Most applications (including ours) assume ρ to be a special-
ization operator : ∀ Ps ∈ ρ(Pg) : Pg � Ps (i.e. Ps is more
specialized than Pg). The algorithm results in a ranked list
of patterns (or the corresponding subgroups) that satisfy the
user-defined constraints.

In traditional SD there is only a single target variable.
Hence, the typical quality measure contains a component
indicating how different the distribution over the target vari-
able in the subgroup is, compared to its distribution in
the whole dataset. Since unusual distributions are easily
achieved in small subsets of the dataset, the typical qual-
ity measure also contains a component indicating the size of
the subgroup. Thus, whether a pattern is deemed interest-
ing depends on both its exceptionality and the size of the
corresponding subgroup.

EMM can be seen as an extension of SD. Rather than the
regular single target variable, EMM uses a more complex
target concept. For each subgroup under consideration, we
induce a model on the targets. Then quality measures are
defined that indicate how exceptional the model fitted on
the targets in the subgroup is, compared to the model fit-
ted on the targets in the whole dataset. For example, [16]
proposes quality measures for correlation models, a simple
linear regression model, and classification models.

In the EMM setting, usually the beam search strategy is
chosen, which performs a level-wise search. On each level,
the best w patterns according to our quality measure ϕ are
selected, and refined to create the candidate patterns for
the next level. The search is constrained by an upper bound
on the complexity of the pattern and a lower bound on the
support of the corresponding subgroup. This search strat-
egy combines the advantages of a greedy method with those
of the implicit parallel search: as on each level w alterna-
tives are considered, the search process is less likely to end
up in a local optimum than a pure greedy approach, but
the selection of the w best patterns at each level keeps the
process focused and thus more tractable.

There are Subgroup Discovery techniques that exhaus-
tively explore the search space. These however usually ei-
ther compel the attributes to be nominal [9, 15] or impose
an anti-monotonicity constraint on the quality measure [11].
Since we do not want such restrictions on the attributes or
the quality measure, we employ heuristic search.

1we consider the exact search strategy to be a parameter of
the algorithm
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2.2 Linear Regression Model
The previous section introduced Exceptional Model Min-

ing in its general form. In this paper, however, we are con-
cerned with one particular instance: the linear regression
model:

Y = Xβ + ε

where Y is the N × 1 vector of y-values from our dataset,
X is the N × p full rank matrix of which the first column
consists of N times the value 1 and column i+1 contains the
xi-values from our dataset, β is the unknown p × 1 vector
consisting of the regression parameters, and ε is the N × 1
vector of randomly distributed errors such that E(ε) = 0
and Var(ε) = σ2I. Of course, I denotes the N ×N identity
matrix.

Given an estimate of the vector β, denoted β̂, one can
compute the vector of fitted values Ŷ . These quantities can
be used to assess the appropriateness of the fitted model,
by looking at the residuals e = Y − Ŷ . We will estimate
β with the ordinary least squares method, which minimizes
the sum of squared residuals. This leads to the estimate:

β̂ =
(
X>X

)−1

X>Y

After computing the vector of fitted values, we find that we
can now write the corresponding residual vector as:

e = (ei) = Y − Ŷ =

(
I −X

(
X>X

)−1

X>
)
Y

We will denote a part of this equation by V :

V = (vij) = X
(
X>X

)−1

X>

This matrix was dubbed the hat matrix by John W. Tukey,
since Ŷ = V Y , i.e. the hat matrix transforms Y into Ŷ [12].

2.3 Regression meets EMM
To mine for exceptional regression models, we have to

come up with a good quality measure. It stands to reason
that this quality measure should quantify the difference be-
tween the coefficient vector β̂ estimated on the dataset, and
the vector β̂G estimated on the subgroup. One could for
example use the squared Euclidian distance

(β̂G − β̂)>(β̂G − β̂) =

p∑
i=1

(β̂Gi − β̂i)2 (2)

to measure the quality of subgroup G. One can argue that
in many applications we are not really interested in the in-
fluence of all variables on y, but just in the influence of
one, or a small subset, of them. The other variables are
merely included in the regression to obtain good estimates
of the coefficients we are interested in. This can be easily
accommodated by summing over the subset of interest in
Equation (2), were one so inclined.

As Equation (2) suggests, to compute the quality of a
subgroup we have to fit a model on it in order to obtain the
estimates β̂G. Since one has to evaluate many subgroups,
this can be computationally quite demanding. Therefore, it
is of some interest to determine whether such explicit com-
putation can be avoided or limited.

In the next section we propose a more sophisticated qual-
ity measure for exceptional regression models, and look at
the possibilities of limiting explicit model fitting on sub-
groups.

3. COOK’S DISTANCE
In the previous section, we suggested the squared Euclid-

ian distance between estimated coefficient vectors as a qual-
ity measure. The disadvantage of this measure is that it
ignores the variance of the estimator β̂, and the covariances
between β̂i and β̂j . For example, if β̂i has a large variance

compared to β̂j , then a given change in β̂i should contribute

less to the overall quality than the same change in β̂j , be-

cause the change in β̂i is more likely to be caused by random
variation. This suggest that

(β̂G − β̂)>[Cov(β̂)]−1(β̂G − β̂)

might be a better distance measure than the normal Euclid-
ian distance. In fact this expression is equivalent to Cook’s
distance up to a constant scale factor. R. Dennis Cook orig-
inally introduced his distance [3] in 1977 for determining the

contribution of single records to β̂. In this section we discuss
this distance measure in detail.

3.1 Cook’s distance for single observations
Recall that the least squares estimate of β is

β̂ =
(
X>X

)−1

X>Y.

The corresponding residual vector becomes

e = Y − Ŷ = Y −Xβ̂ = (I − V )Y,

where V is the hat matrix defined in Section 2.2. The co-
variance matrices of Ŷ and e, respectively, are

Var
(
Ŷ
)

= V σ2, Var (e) = (I − V )σ2

Finally, Cook states that according to normal theory [10],
the (1 − α) × 100% confidence ellipsoid for the unknown
vector, β, is given by the set of all vectors β∗ satisfying(

β∗ − β̂
)>

[Ĉov(β̂)]−1
(
β∗ − β̂

)
p

=

(
β∗ − β̂

)>
X>X

(
β∗ − β̂

)
ps2

≤ F (p,N − p, 1− α)

where

s2 =
e>e

N − p , Ĉov(β̂) = s2
(
X>X

)−1

and F (p,N − p, 1− α) is the 1− α probability point of the
central F -distribution with p and N − p degrees of freedom.
Here, s2 is the unbiased estimator for σ2.

Now the stage has been set to determine the degree of
influence of single records. Suppose we want to know how
record ri influences β̂. Then one could naturally compute
the least squares estimate for β with the record removed
from the dataset. Let us denote this estimate by β̂(i). We
can adapt the confidence ellipsoid as an easily interpretable
measure of the distance between β̂(i) and β̂. Hence, Cook’s
distance is defined as:

Di =

(
β̂(i) − β̂

)>
X>X

(
β̂(i) − β̂

)
ps2

(3)

Suppose for example that for a certain record ri we find
that Di ≈ F (p,N − p, 0.5). Then removing ri moves the

870



r1

r2

r3

r4

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
x

y

Figure 1: Records r1 and r2 are individually influen-
tial, but not jointly. Conversely, r3 and r4 are jointly
influential, but not individually.

least squares estimate to the edge of the 50% confidence
region for β based on β̂.

Bingham [2] showed that Equation (3) can be rewritten
in the form

Di =

(
Ŷ(i) − Ŷ

)> (
Ŷ(i) − Ŷ

)
ps2

which suggests that apart from the scale factor ps2, Di is the
ordinary squared Euclidean distance that the fitted vector
moves when ri is removed from the dataset.

Cook’s distance would not be particularly useful if one
really would have to compute β̂(i) for each record in the
dataset. However, Cook shows [3] that under some mild
assumptions Di can be rewritten as

Di =
t2i
p
·

Var
(
Ŷi
)

Var (ei)
(4)

where ti is the studentized residual of the ith record. These
quantities all relate to the full dataset. Clearly ti is a mea-
sure of how well ri can be considered an outlier from the
assumed model. The ratio of variances measures the rela-
tive sensitivity of β̂ to potential outliers at each data point.
Combining these factors hence produces a measure of the
impact of any single point on the least squares estimate.

3.2 Cook’s distance for multiple observations
Whenever we want to compute the influence of deleting

several points simultaneously, as is the case in EMM, one
cannot simply use Equation (3) and sum over all records
concerned. We will illustrate why with a simple constructed
example [4]. Consider linear regression on the dataset from
Figure 1. Suppose that we consider removing records r1

and r2 from the dataset. If we would remove either of these
records, this will have a rather large influence on the slope of
the resulting regression line, hence according to Equation (3)
both D1 and D2 will be large. However, when we remove
both records from the dataset, the influences of the records
will cancel each other out, and the slope of the regression
line will barely change at all: r1 and r2 are not jointly in-
fluential. On the contrary, when removing either record r3

or r4 from the dataset, the slope of the regression line will

barely change, hence according to Equation (3) both D3 and
D4 are small. However, their joint influence is quite large:
removing both records from the dataset will significantly in-
fluence the slope of the regression line.

Hence, we cannot give a reliable measure for the joint
influence of a set of records by aggregating over values of Di.
Therefore, Cook and Weisberg extended Cook’s distance to
cope with deleting multiple records simultaneously [4]. Let
I be a vector of indices that specify the m records to be
deleted. From now on, we let the subscript (I) denote “with
the m cases indexed by I deleted”, while the subscript I
without parentheses denotes “with only the m cases indexed
by I remaining”. The only notation that deviates from this
rule of thumb is the definition of Cook’s distance, which is
easily extended to multiple observations:

DI =

(
β̂(I) − β̂

)>
X>X

(
β̂(I) − β̂

)
ps2

(5)

and its geometric interpretation is identical to the geomet-
rical interpretation of Di. Any subset that has a large joint
influence on the estimation of β corresponds to a large DI .

The fact that the definition of Cook’s distance does not
follow the notational rule of thumb can be very confusing.
We choose to retain the definition in this form to make our
work compatible with previously released papers and books.
However, it is important to stress the notational anomaly:
whenever we write DI , Cook’s distance is computed for the
case where the records indexed by I are deleted. Whenever
we write anything else with a subscript I, it is computed for
the case where the records indexed by I are retained, and
all other records are deleted.

Unfortunately, unlike in the case where we deleted only
one record, DI cannot simply be rewritten in a form resem-
bling Equation (4). Hence we need another solution to the

problem that computing β̂(I) for each candidate subgroup is
computationally very expensive.

The upper bounds for Cook’s distance are derived [5, pp.
136] by rewriting the numerator of the right hand side of
Equation (5) in terms of eI and VI . Then the spectral
decomposition of VI is used, rewriting the sub-matrix of
the hat matrix in terms of its eigenvalues and eigenvectors.
We denote those eigenvalues by λ1, . . . , λm, and can assume
without loss of generality that 0 ≤ λ1 ≤ . . . ≤ λm ≤ 1.
Notice that if the last inequality is not strict, i.e. λm = 1,
then removing the records indexed by I would lead to a rank
deficient model, and we cannot properly perform the linear
regression. Finally, a proper approximation for these λi is
required; Cook proposes to use tr (VI) here, but notes that
this is only a good approximation under the condition that
tr (VI) < 1. Assuming that this condition holds, we can
bound DI by:

DI ≤
tr (VI)

(1− tr (VI))
2 ·
∑
i∈I e

2
i

ps2
(6)

Unfortunately, this bound is potentially different for each I.
Cook also gives bounds that hold for all subsets I of a fixed
size m. When we fix m and let I vary over all such sub-
sets, we can either use R2 = maxI

(∑
i∈I e

2
i

)
, which turns

Equation (6) into:

DI ≤
tr (VI)

(1− tr (VI))
2 ·

R2

ps2
(7)
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or we could use T = maxI
(∑

i∈I vii
)
, which turns Equa-

tion (6) into:

DI ≤
T

(1− T )2
·
∑
i∈I e

2
i

ps2
(8)

Both simplifications R2 and T can be combined to turn
Equation (6) into:

DI ≤
T

(1− T )2
· R

2

ps2
(9)

Rather obviously, there are relations between the bounds,
i.e. (6) ≤ (7) ≤ (9) and (6) ≤ (8) ≤ (9).

3.3 Subsets of β̂
For practical purposes one might not be interested in com-

puting Cook’s distance based on the entire parameter vector
β̂. For instance, one might be interested in the influence
records have on the regression coefficient corresponding to
one particular attribute, while excluding the intercept and
other coefficients from the evaluation. To this end, Cook
and Weisberg [5] introduce the zero/one-matrix Z, with di-

mensions q× p, where q is the number of elements of β̂ that
we are interested in (hence q ≤ p). The matrix Z is defined
in such a way that ψ = Zβ are the coefficients of interest.
Hence, if we are interested in the last q elements of β̂, Z will
start from the left with p− q columns containing all zeroes,
followed by a q × q identity matrix (Z = (0, Iq)).

When using this transformation, Cook’s distance (Equa-
tion (5)) becomes:

Dψ
I =

(
β̂(I) − β̂

)>
Z>

(
Z
(
X>X

)−1
Z>
)−1

Z
(
β̂(I) − β̂

)
qs2

One can show that qDψ
I ≤ pDI for all I, hence one can

make all bounds (6)–(9) relevant forDψ
I by multiplying them

by the factor p
q
.

3.4 Cook’s distance in EMM
Since Cook’s distance is invariant to changes in scale of

the variables involved [3], it would make an excellent quality
measure for use in EMM:

Definition (ϕCook). Let GP be a subgroup. Its quality
according to Cook’s distance is given by:

ϕCook (GP ) = Dψ
I , where I =

{
i
∣∣∣ri ∈ D, P (ai) = 0

}
Hence, Cook’s distance of a subgroup is the distance bridged
when the records that are not covered by the subgroup are
simultaneously discarded. This definition seems a bit con-
voluted; it is constructed in such a way that the notational
anomaly discussed in Section 3.2 is repaired: whenever we
write ϕCook (Gp), Cook’s distance is computed for the case
where the records belonging to the subgroup Gp are retained.

3.5 Pruning with Cook’s bounds
Whenever one has the possibility to enumerate all candi-

date subgroups for mining with Cook’s distance, the bounds
(6)–(9) can be used for pruning. In combination with the
beam search strategy, we propose to do this in the following
way.

Per search level, we determine the number of subgroups S
we are interested in retaining. We enumerate all candidate

Dataset N k p
Ames Housing 2930 77 3
Auction 1225 3 7
EAEF 2714 32 3
Giffen Behavior 1254 6 16
PC486 6259 3 7
Wine 5000 6 4

Table 1: Some elementary properties of the datasets.
N is the total number of records, k is the number of
attributes that can be used to define subgroups, and
p is the number of coefficients in the fitted regression
model.

subgroups in descending ordered according to one of the
bounds. Then we consider the subgroups in this order.

For each subgroup, we compute the bounds in order of
decreasing ease of computation, i.e. first bound (9), then
bound (8), then bound (7), and finally bound (6). We check
whether any of these bounds has a value that is lower than
Cook’s distance for the Sth best evaluated subgroup so far.
If so, we know that Cook’s distance for this new subgroup
can not enter the top-S, since the bound is an upper bound
for Cook’s distance. Hence we can skip computing Cook’s
distance for this subgroup, which saves us the computation
of a relatively expensive regression. If none of the bounds
help us out, we compute Cook’s distance for the new sub-
group.

4. BOUND BEHAVIOR AND PRUNING
Table 1 lists the datasets we have used in the experiments.

All datasets are publicly available. The Giffen behavior
dataset2 was used for a study that claimed to provide the
first real-world evidence of Giffen behavior, i.e. an upward
sloping demand curve [13]. The EAEF dataset3 was an-
alyzed in [7]. The Wine data was analyzed in [6], and is
available from the data archive of the Journal of Applied
Econometrics4. The Ames Housing data is available from
the Journal of Statistics Education data archive5. Finally,
the PC486 data and the Auction data were analyzed in [19]
and [18] respectively, and are both available from the data
archive of the Journal of Applied Econometrics.

To illustrate what can reasonably be expected from prun-
ing with the bounds, we simulated their behavior on random
subgroups of the EAEF dataset. For each possible subgroup
size, we drew a random sample of the data with that size.
Then we computed the values of the bounds for these sub-
groups, when fitting the model

Earnings = β0 + β1 ×YrsOfSchool

The results can be found in Figure 2. The figure depicts the
subgroup size on the x-axis (linear scale), and the values of
the bounds on the y-axis (logarithmic scale).

2The data can be downloaded from: www.aeaweb.org/
articles.php?doi=10.1257/aer.98.4.1553
3The data can be obtained from www.oxfordtextbooks.co.
uk/orc/dougherty4e/
4http://econ.queensu.ca/jae/
5http://www.amstat.org/publications/jse/jse_data_
archive.htm
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Figure 2: Bound values (logarithmic scale) for random subgroups of different sizes on the EAEF dataset.
Fitted model: Earnings = β0 + β1 ×YrsOfSchool.

The EAEF dataset has 2714 records, so when a subgroup
approaches this size it will correspond to deleting very few
records, and as one would expect Cook’s distance becomes
very small, as do the bounds. Furthermore, one notices
that the bound quality lines do not extend all the way to
subgroup size 0. This is caused by limitations in the ap-
proximations used in the bounds. As we mentioned in Sec-
tion 3.2, the bounds are only good approximations whenever
tr (VI) < 1. When this constraint is not satisfied, the bounds
cannot be computed. For bounds (8) and (9), the quantity
T is used as an estimate for tr (VI), but this too only makes
sense when T < 1, or else the bounds cannot be computed.

The practical upshot is that for subgroups smaller than
1960 records, bounds (8) and (9) cannot be computed. For
subgroups smaller than roughly 1250 records, this also holds
for bounds (6) and (7). When viewed as a percentage of the
number of records in the datasets, we find that these borders
are roughly the same over all datasets: bounds (6) and (7)
can only be computed when the subgroup contains at least
50% of the records, and bounds (8) and (9) only when the
subgroup contains at least 75% of the records. We also find
that the more complex the model we fit, the further these
thresholds move towards larger percentages.

The bounds can not be computed for at least half of
the subgroups we consider, and the bound values tend to
increase enormously just before these threshold values are
reached. However, the bounds are computable for the largest
subgroups, and the computation of the hat matrix is quadratic
in the subgroup size. Hence whenever we can prune a sub-
group, it always takes a relatively expensive regression com-
putation out of the total runtime.

4.1 Empirical bound evaluation
To empirically see how the bounds perform, we performed

a depth-1 subgroup discovery run on each dataset, with the
goal to find the top-1 subgroup. When numeric attributes
were used to generate candidate subgroups, we split them
into 12 equal-sized bins. We discarded any subgroup that

covered less than 100 records, since we consider these too
small to be considered interesting from a statistical point of
view. For each bound we counted how often it was com-
puted, and how often it caused a subgroup to be pruned.

The results can be found in Table 2. This table features
the datasets, dataset characteristics, number of times ev-
ery bound is computed, number of subgroups pruned with
every bound, fraction of candidate subgroups for which at
least one bound was computable, and fraction of candidate
subgroups that were pruned. Notice that there is a strong
dependency between the“Bound computed”and“Subgroups
pruned” columns: in the Ames Housing dataset we can com-
pute bound (9) for 196 subgroups, of which we can prune
155, so only 41 subgroups remain for which we compute
bound (8). However, the number of subgroups for which we
compute bound (7) is larger, since the condition under which
this bound is computable is less strict than the condition for
bound (8) and (9). Of the 228 subgroups for which we com-
pute bound (7) we can prune 191, leaving 37 subgroups for
which we compute bound (6).

As we indicated in the previous section, the fraction of
subgroups for which we can compute the bounds is strongly
dependent on the complexity of the fitted model. As we
can see from the table, in the datasets for which 3 ≤ p ≤ 4
we can compute bounds for over 40% of the subgroups, in
the datasets for which p = 7 we can compute bounds for
33 − 35% of the subgroups, and in the dataset for which
p = 16 we can compute bounds for just 1% of the subgroups.
This dependency becomes somewhat less direct when we
look at the percentage of subgroups we can actually prune,
since this is relatively low for the EAEF dataset on which
we fit a relatively simple model. However, apart from this
one dataset, we still see a strong relation between model
simplicity and pruning success.

Since we are rarely interested in only the one best-perform-
ing subgroup, we replicate these experiments with the goal
to find the top-50 subgroups. Since we need to have consid-
ered at least 50 subgroups before we can make sure others
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Dataset N |C| p Bounds computed Subgroups pruned |bounded C|
|C|

|pruned C|
|C|

(9) (8) (7) (6) (9) (8) (7) (6)
Ames Housing 2930 980 3 196 41 228 37 155 28 191 11 0.419 0.393
Auction 1225 40 7 5 0 9 5 5 0 4 0 0.350 0.225
EAEF 2714 204 3 35 29 68 68 6 9 0 21 0.407 0.176
Giffen Behavior 1254 100 16 1 1 1 1 0 0 0 1 0.010 0.010
PC486 6259 6 7 0 0 2 1 0 0 1 0 0.333 0.167
Wine 5000 56 4 2 2 26 20 0 0 6 11 0.464 0.304

Table 2: Pruning results for depth-1 EMM runs, when looking for the top-1 subgroup. N is the total number
of records, C is the set of candidate subgroups considered, and p is the number of coefficients in the fitted
regression model.

Dataset N |C| p Bounds computed Subgroups pruned |bounded C|
|C|

|pruned C|
|C|

(9) (8) (7) (6) (9) (8) (7) (6)
Ames Housing 2930 980 3 196 125 272 122 71 68 150 44 0.419 0.340
EAEF 2714 204 3 35 34 77 77 1 5 0 11 0.407 0.083

Table 3: Pruning results for depth-1 EMM runs, when looking for the top-50 subgroups.

will not enter the top-50 based on their bounds, we know
in advance that there will be little or no pruning possible
for the Auction, PC486, and Wine datasets. We also expect
to gain little information from the Giffen Behavior dataset,
hence Table 3 encompasses the results of these experiments
on merely the Ames Housing and EAEF dataset. Notice
that the fraction of subgroups we can prune on the Ames
Housing dataset has only decreased slightly, while the frac-
tion of subgroups we can prune on the EAEF dataset is cut
in half.

We repeated all these experiments with depth-2 subgroup
discovery runs with beam width 10. We find that in these
experiments, we can barely compute bounds for any level-2
subgroups, let alone prune subgroups. This is caused by the
fact that level-2 subgroups are refinements of well-scoring
level-1 subgroups, which are usually relatively small. Well-
scoring level-1 subgroups almost never cover more than 50%
of the records, hence their refinements also almost never do
so. Fortunately, that also means that the regression compu-
tations for these subgroups is relatively cheap.

5. ILLUSTRATIVE RESULTS
In this section we give a number of examples of the types

of results that can be obtained with our algorithm. The
reader should keep in mind that this type of analysis should
normally be performed in collaboration with a subject area
expert who could aid in the interpretation of the results.

5.1 Giffen Behavior Data
This dataset was used for a study that claimed to pro-

vide the first real-world evidence of Giffen behavior, i.e. an
upward sloping demand curve [13]. As common sense sug-
gests, the demand for a product will usually decrease as its
price increases. According to economic textbooks, there are
circumstances however, for which we should expect to see
an upward sloping demand curve. The common example is
that of poor families that spend most of their income on a
relatively inexpensive staple food (e.g. rice or wheat) and a
small part on a more expensive type of food (e.g. meat). If
the price of the staple food rises, people can no longer afford

to supplement their diet with the more expensive food, and
must consume more of the staple food.

The dataset we analyze was collected in different counties
in the Chinese province Hunan, where rice is the staple food.
The price changes were brought about by giving vouchers to
randomly selected households to subsidize their purchase of
rice. The global model estimated in [13] is:

%∆staplei,t = α+ β%∆pi,t +
∑

γ%∆Zi,t+

+
∑

δCounty× Timei,t + ∆εi,t,

where %∆staplei,t denotes the percent change in household
i’s consumption of rice, %∆pi,t is the percent change in the
price of rice due to the subsidy (negative for t = 2 and pos-
itive for t = 3), and %∆Zi,t is a vector of percent changes
in other control variables including income and household
size. County × Time denotes a set of dummy variables in-
cluded to control for any county-level factors that change
over time. For each household, two changes are observed:
the change between periods 2 and 1 (t = 2), capturing the
effect of giving the subsidy; and the change between periods
3 and 2 (t = 3) capturing the effect of removing the subsidy.
For further details about the design of the study and the
estimation strategy, we refer to [13].

The coefficient of primary interest is β. If β > 0 we ob-
serve Giffen behavior. The other variables are included in
the model to control for other possible influences on demand,
so that the effect of price can be reliably estimated. There-
fore it makes sense to restrict our quality measure to the
coefficient β, that is, the quality of a subgroup is propor-
tional to the absolute difference between β̂ and β̂G.

The authors of [13] suggest that for the extremely poor,
one might not observe Giffen behavior, because they con-
sumed rice almost exclusively anyway, and therefore have
no other possibility than buying less of it in case of a price
increase. The Initial Staple Calorie Share (ISCS) was also
measured in the study, and the hypothesis is that families
with a high value for this variable do not display Giffen
behavior. The authors of [13] tried different manually se-
lected thresholds on ISCS; for example, for the subgroup
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of households with ISCS > 0.8, indeed it is observed that
β̂ = −0.585 (no Giffen behavior) whereas for ISCS ≤ 0.8

they get β̂ = 0.466 (Giffen behavior).
We analyzed this dataset with ISCS as one of the variables

on which the subgroups could be defined. At depth 1, the
best subgroup we found was ISCS ≥ 0.87 with β̂ = −0.96
(against β̂ = 0.22 for the complete dataset). The size of
this subgroup is n = 106. This confirms the conclusion that
Giffen behavior does not occur for families that almost ex-
clusively consume rice anyway. This conclusion can also be
reached by defining subgroups on income per capita rather
than ISCS. Particularly illustrative examples are the 4th-
ranked subgroup: Income per Capita ≤ 64.67, with a slope
of −0.41, and the 6th-ranked subgroup: Income per Capita
≥ 803.75, with a slope of 0.79 (strong Giffen behavior).

5.2 EAEF Data
This dataset has been extracted from the National Lon-

gitudinal Survey of Youth 1979-(NLSY79). It contains in-
formation about hourly earnings of men and women, and
information about, among others, their education. For more
details, we refer to Appendix B of [7]. We fit a model re-
lating years of schooling and years of work experience to
earnings. The model fitted on the complete dataset is:

Earnings = −29.15+2.78×YrsOfSchool+0.63×YrsWorkExp

All coefficients in this model are significant at α = 0.01, and
R2 is approximately equal to 20%.

The 4th ranked subgroup we found was COLLBARG = 1,
meaning that the pay was set by collective bargaining. The
fitted model for this subgroup of size n = 533 is:

Earnings = −8.93+1.57×YrsOfSchool+0.43×YrsWorkExp

This suggests that for this group an extra year of schooling
on average leads to an increase of just $1.57 in hourly earn-
ings, compared to $2.78 for the whole dataset. The same is
true for the influence of an extra year of work experience:
just $0.43 for the collective bargaining subgroup, against
$0.63 in the complete dataset. This is consistent with the
finding that unions tend to equalize the income distribution,
especially between skilled and unskilled workers [1].

5.3 Wine Data
This dataset was analyzed in [6]. It is composed of 9600

observations derived from 10 years (1991-2000) of tasting
ratings reported in the Wine Spectator Magazine (online
version) for California and Washington red wines. Our anal-
ysis uses a random sample of size 5000 from the original data.
For a detailed description of the data we refer to [6]. The
global model is

Price = −186.61−0.0002×Cases+2.35×Score+5.51×Age,

where Price is the retail price suggested by the winery, Score
is the score from the Wine Spectator, Age is the years of ag-
ing before commercialization, and Cases is the number of
cases produced (in thousands). All coefficients are signifi-
cant at α = 0.01, and R2 is approximately equal to 31%.
Furthermore, all coefficients have the sign that one would
expect based on common sense.

The most deviating subgroup is Variety = Non-varietal
(alternatives are Pinot noir, Cabernet, Merlot, Zinfandel
and Syrah). The regression model for this subgroup is:

Price = −341.92−0.0004×Cases+4.16×Score+7.22×Age

Non-varietal actually means that multiple varieties of grapes
are used, and on average these wines are more expensive
than the single-variety wines (average price of $44,16 against
$28,89). People buying those more expensive wines tend
to be better informed (e.g. read Wine Spectator Magazine)
than the average buyer. This explains to a certain extent
why the price of those more expensive wines is more sensitive
to its score and age: they have more critical buyers.

5.4 Ames Housing Data
This dataset contains information from the Ames Asses-

sor’s Office used in computing assessed values for individual
residential properties sold in Ames, Iowa from 2006 to 2010.
It consists of 2930 observations on 82 variables. The global
model is

Price = −108225.05 + 1.93×Lot Area + 44201.87×Quality,

where Price is the sales price of the house in dollars, Lot
Area is the lot size in square feet, and Quality rates the
overall material and finish of the house on a scale from 1 to
10. All coefficients are significant at α = 0.01, and R2 is
about 67%.

By far the most deviating subgroup we find is where the
building type is a townhouse inside unit:

Price = −17674.20 + 24.62×Lot Area + 15786.88×Quality

The size of this subgroup is n = 101, and the R2 of the
model fitted to this subgroup is about 71%. The depen-
dence of price on lot area is much stronger for town houses,
whereas the dependence of price on overall quality is less
strong than in general. In an attempt to explain this pat-
tern, we note that the average lot area of town houses (2353
square feet) is much smaller than the overall average (10148
square feet) which is largely determined by the predominant
building type single family detached. Furthermore, it stands
to reason that for townhouses a larger part of the lot area is
actually occupied by the house itself than for the single fam-
ily detached houses. This is consistent with a much stronger
dependence of their price on the lot area.

6. CONCLUSIONS
In this paper, we have proposed to use Cook’s distance

in an Exceptional Model Mining setting. This allows us to
find subgroups of the data, for which a regression model
fitted on certain dedicated target variables is substantially
different from that model for the whole dataset. The use of
Cook’s distance has two large benefits.

On the one hand, Cook’s distance has some desirable prop-
erties. It is invariant under changes in the scale of a vari-
able, and it explicitly takes the covariance matrix of β̂ into
account. Hence when using Cook’s distance we need not
worry whether the outcome of the EMM algorithm is in-
fluenced by the scale ones attributes happen to arrive in
(attributes need not be normalised), or the interactions that
happen to be present between the regression parameters.

On the other hand, there are some theoretical upper bounds
on Cook’s distance, that can be computed without actually
performing the relatively expensive regression computations.
As we have seen, these bounds can only be computed un-
der certain constraints, which correspond to the subgroup
covering at least 50% of the records. On the one hand,
this means that we can compute the bounds for relatively
few subgroups, but on the other hand, whenever we can
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prune a subgroup, we always prune a relatively expensive
regression computation, since the computational complex-
ity is quadratic in the subgroup size. In future research, we
would like to develop bounds for Cook’s distance that can
be computed for subgroups with small coverage as well.

As we have seen in Section 4, the fraction of subgroups
that can be pruned is strongly dependent on the complexity
of the regression model we fit. We have seen some datasets
(Ames Housing and Wine) for which the model complex-
ities are modest, on which we can prune almost 40% and
30% of the subgroups, respectively. On datasets for which
the model complexities are mediocre, we can still prune ap-
proximately 20%, and on the dataset for which the model
complexity is high, we can prune only 1%.

In Section 5 we have discussed some illustrative examples
of subgroups found on datasets from different domains. The
models fitted on these subgroups are discussed. These exam-
ples show the versatility of the problems which EMM with
Cook’s distance can solve.

We discussed in Section 3.2 how the joint influence of
records makes Cook’s distance for single observations theo-
retically unsuitable for use in a setting where multiple obser-
vations are removed simultaneously. However, it may very
well be that this problem is not that serious on real-life
datasets. Hence, in future research, we would like to see
whether we can use Cook’s distance for single observations
as a proxy for Cook’s distance for multiple observations, for
instance by summing over Di for all i ∈ I.

Also in future work, we would like to explore whether we
can improve pruning for complex models. Often one is not
interested in the influence of all model coefficients, and in
Section 3.3 we have seen an adaptation of Cook’s distance
such that it is evaluated on a subset of the coefficients. We
also gave a way to modify the bounds accordingly, but this
is done in a rather blunt way. We plan to study whether
more sophisticated bounds can be derived, with which we
can prune more subgroups.

Finally, this paper was motivated by the Giffen behavior
example, in which coefficients not only substantially change
in magnitude, but additionally change in sign. Such sign
changes can be found on other datasets as well, and the
subgroups to which such models are fitted are usually among
the most striking subgroups we can find. In future work, we
would like to develop a quality measure that explicitly seeks
for such sign changes.

Acknowledgments
This research is financially supported by the Netherlands
Organisation for Scientific Research (NWO) under project
number 612.065.822 (Exceptional Model Mining).

7. REFERENCES
[1] T. Aidt and Z. Tzannatos, Unions and Collective

Bargaining, The World Bank, 2002.

[2] C. Bingham, Some identities useful in the analysis of
residuals from linear regression, technical report no.
300, School of Statistics, University of Minnesota, St.
Paul, 1977.

[3] R. D. Cook, Detection of Influential Observation in
Linear Regression, Technometrics 19(1), pp. 15–18,
1977.

[4] R. D. Cook, S. Weisberg, Characterizations of an
Empirical Influence Function for Detecting Influential
Cases in Regression, Technometrics 22(4), pp. 495–508,
1980.

[5] R. D. Cook, S. Weisberg, Residuals and Influence in
Regression, Chapman & Hall, London, 1982.

[6] M. Costanigro, R. C. Mittelhammer, J. J. McCluskey,
Estimating Class-Specific Parametric Models under
Class Uncertainty: Local Polynomial Regression
Clustering in an Hedonic Analysis of Wine Markets,
Journal of Applied Econometrics 24, pp. 1117–1135,
2009.

[7] C. Dougherty, Introduction to Econometrics (4th
edition), Oxford University Press, 2011.

[8] W. Duivesteijn, A. Knobbe, A. Feelders, M. van
Leeuwen, Subgroup Discovery meets Bayesian networks
– an Exceptional Model Mining approach, Proc. ICDM,
pp. 158–167, 2010.

[9] J. Friedman, N. Fisher, Bump-Hunting in
High-Dimensional Data, Statistics and Computing 9(2),
pp. 123–143, 1999.

[10] J. F. Gentleman, M. B. Wilk, Detecting outliers II:
Supplementing the direct analysis of residuals,
Biometrics 31, pp. 387–410, 1975.
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