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Abstract. ROCsearch is a ROC-based beam search variant, initially
developed for Subgroup Discovery (SD). In ordinary beam search, on
each search level, a fixed number of best-scoring candidates are selected
to generate candidates for the next search level. This fixed number, the
beam width, is typically hard to set, and its setting strongly influences
the outcome of the mining process. In ROCsearch, however, on each
search level, the beam width is set dynamically by analyzing the inter-
mediate results in ROC space. Thus, setting the beam width parameter
is taken out of the domain expert’s hands, lowering the threshold for
using Subgroup Discovery. Also, ROCsearch automatically adapts its
search behavior to the properties and resulting search landscape of the
dataset at hand. In Subgroup Discovery, ROCsearch has been shown
to be an order of magnitude more efficient than traditional beam search,
while its results are equivalent and on large datasets even better than
traditional beam search results. However, ROCsearch has not been in-
vestigated beyond SD, while it should be readily applicable in machine
learning and data mining outside of the SD subfield. As work in progress,
we propose this wider outlook for ROCsearch.

1 Introduction

Beam search [1] is a level-wise search strategy, in which the candidate space is
traversed in a general-to-specific manner. On the first level, relatively general
candidates are considered, of which the most promising w (for search width) are
selected as the beam. On the second level, we only consider candidates that are
specializations of the candidates in the beam, and again, the w most promising
candidates are selected to form the beam for the next level. By limiting the
number of levels and controlling the search width, the end-user can control the
amount of time invested in the search. The beam search strategy finds middle

? This research is supported in part by the Deutsche Forschungsgemeinschaft (DFG)
within the Collaborative Research Center SFB 876 “Providing Information by
Resource-Constrained Analysis”, project C1.



ground between a completely greedy method and exhaustive search; on the one
hand, selecting only the w most promising candidates on each level keeps the
process focused, while on the other hand, considering w alternatives decreases
the likelihood that the process ends up in a local optimum.

Performance of a beam search algorithm is strongly dependent on the chosen
search width. Setting the width too low will lead to missing interesting results.
Setting the width too high will lead to consideration of too many uninterest-
ing results. Unfortunately, in practice, the search width is nontrivial to set. A
proper value strongly depends on many properties of the dataset (column types
and cardinalities, the number of columns and rows, the number of underlying
concepts present in the data) and the data mining problem at hand. Recently, we
introduced the new beam search variant ROCsearch [2] in the context of Sub-
group Discovery (SD) [3, 4]. ROCsearch marries concepts from beam search
and ROC analysis [5, 6], in which the value for this sensitive parameter w is
automatically learned from the data and tuned by the amount of underlying
concepts encountered in the data.

ROCsearch automatically adjusts the search width of the beam search pro-
cess to the peculiarities of the dataset at hand. Hence, ROCsearch takes away
the responsibility to set this parameter from the domain expert, who is usu-
ally ill-equipped to perform this task, yet is punished with bad results when
setting the parameter wrongly. Thus, ROCsearch makes heuristic data min-
ing substantially more user-friendly. Moreover, on the Subgroup Discovery task,
ROCsearch is an order of magnitude more efficient than traditional beam
search, while the results that it finds are equivalent on small datasets and even
better on large datasets, compared to the results found with traditional beam
search. With this work in progress report, we hope to invite discussion on where
else ROCsearch can be employed.

2 Preliminaries: ROC Analysis

Throughout this work we assume a dataset in a supervised setting; one attribute
of the data is the designated target, which must have a type that can be handled
as the target in ROC analysis. In practice, we consider either binary targets, or
nominal targets that can be treated naturally with a one-versus-all strategy. One
particular value for the target is singled out as the desired value: records having
that particular value are the positives, and the other records are the negatives.

ROC analysis has a rich history in the field of signal processing [5]. Originally
it was used to visualize the tradeoff between hit rates and false alarm rates of
classifiers, the value of which for algorithm comparison was recognized in the
eighties [6]. In its most traditional form, ROC analysis concerns a learning prob-
lem with a binary response variable. Results of a learning task are interpreted
in terms of a tradeoff between the True Positive Rate (TPR) and the False Pos-
itive Rate (FPR). When the value of ROC analysis for algorithm comparison
was recognized, the machine learning community adopted it, initially in order to



compare classifiers. Extensive papers have been written on incorporating ROC
analysis into machine learning and data mining [7, 8].

The ROC methodology analyzes results in ROC space: the two-dimensional
unit square with FPR on the horizontal axis and TPR on the vertical axis. The
perfect result, containing all the positives and no negatives, is found in the top
left corner; its coordinates in ROC space are (0,1). The empty result is found
in the bottom left corner with coordinates (0,0), and the full result containing
the whole dataset is found in the top right corner with coordinates (1,1). Given
the domain at hand, we may desire to assign different costs to the two kinds of
imperfections we can have in a result: false positives and false negatives.

Definition 1 (Optimal Result). Suppose a result set R, and a cost assign-
ment to false positives and false negatives. A result R ∈ R is called optimal
within R for this cost assignment, if its total cost equals the minimum total cost
for any result in R.

Hence, a result R is optimal within a result set R for some cost assignment if
and only if it lies on the convex hull of R in ROC space [9].

3 The ROCsearch Algorithm

ROCsearch is a level-wise search, where candidates are built by refining candi-
dates that are selected as the beam on the previous level. What sets ROCsearch
apart from existing beam search strategies, is the way candidates are selected to
form the beam. The beam in ROCsearch will be called the ROC-beam from
here on, and we refer by any of the terms ROC-point and point to the point
(FPR,TPR) in ROC space corresponding to a candidate.

As hinted in Section 1, for the beam we select those candidates that lie on
the convex hull in ROC space. For our purposes, this is the shortest polyline
that connects the lower left corner with the upper right corner, such that all
the points lie on or below the polyline. Note that the convex hull (CH) includes
the two (implicit) results: the empty result, and the full result (with coordinates
(0, 0) and (1, 1) in ROC space, respectively).

At each search level, a new CH is initiated with these two points, after which
candidates are tentatively added to the convex hull. When a candidate is added,
one of three situations occurs. If the point falls below the CH, it is simply ignored.
If the point falls exactly on the CH, the candidate is added to the ROC-beam
and the CH does not require an update, as it does not change form. If the point
falls above the CH, the CH will have to be updated, and some of the existing
ROC-points may now fall below the CH. As a consequence, the candidate(-s)
corresponding to these points are removed from the ROC-beam. The resulting
(often fairly small) subset of the candidates, is then further processed as usual
in beam search. Note that although the empty result (0, 0) and the entire result
(1, 1) are always part of the CH, they are obviously ignored for the ROC-beam.

Observe that the CH created by the algorithm is not required to be strictly
convex. ‘Strictly convex’ in this context means that points that lie on the convex



hull, but not on one of its corners, would not end up in the ROC-beam. As these
results are optimal as defined in Section 2, we decide to add such candidates to
the ROC-beam, and thus compute a non-strict convex hull.

3.1 Online Construction of the Convex Hull

A number of CH construction and maintenance algorithms exist, with varying
complexity properties. Here, we describe a modified version of Melkman’s linear-
time algorithm [10] for simple polylines, which is widely regarded the best CH
algorithm. It is fast, elegant, and constructs the CH in an online manner. This
online property is strongly required for our application, since it is applied on
each level of the ROCsearch algorithm for determining the convex hull of the
set of candidates in ROC space. Depending on the learning task at hand, this
set can grow extremely large. If, as opposed to online, our CH algorithm would
need to post-process all candidate subgroups, the entire set needs to be stored.
We can relieve ROCsearch from this unnecessary memory burden by selecting
an online CH algorithm, and therefore we choose Melkman’s.

Creating candidates one by one, we can determine the corresponding ROC-
point. Using Melkman’s algorithm, a check is performed that decides whether
the candidate is added to the ROC-beam or not. When added, the CH is mod-
ified as needed, potentially removing candidates from the ROC-beam in the
process. By the nature of our update process, we can guarantee that the CH we
construct will always remain a simple polyline, meaning it has no intersections.
This is required by the Melkman algorithm, allowing its linear-time complexity.
Melkman requires a lower hull, which is formed by the line segment from (0, 0)
to (1, 1). The upper hull is formed from incoming points corresponding to new
candidates, but no candidates having TPR < FPR are ever added. This ensures
that the polyline remains simple. Whenever a point is added to the upper hull,
the hull as a whole is updated, ‘radiating’ outward from the inserted point, re-
moving others when needed, and so avoiding the introduction of intersections.
The modified version of the algorithm updates only the upper hull, and exploits
knowledge of the ROC space, the orientation of the hull therein, and its extreme
points.

3.2 Performance

Compared to the traditional beam search setting, ROCsearch has proven ben-
eficial in experiments with the Subgroup Discovery task on eight UCI datasets
[2, Section 5]: apart from autoconfiguring a hard-to-set parameter, the subgroup
sets found with ROCsearch are of equivalent quality as those found with tradi-
tional beam search, but the computational expense of ROCsearch is an order
of magnitude lower.



4 Related Local Pattern Mining Methods

In the Local Pattern Mining subfield of data mining, using a convex hull or
pareto front as a selection mechanism to determine a set of relevant patterns
is a recurring idea. In predictive rule learning, the idea of reducing a set of
candidate rules by only considering those on the convex hull was explored in
the ROCCER algorithm [11]; ROCsearch can be seen as an exploration of
the ROCCER concept as a driving mechanism for search instead of merely a
selection mechanism. In skypattern mining [12], a set of measures on which
a pattern is to be evaluated is input to the problem. The goal then becomes
finding patterns that are not dominated by others on the full set of measures.
This idea was instantiated by Van Leeuwen and Ukkonen [13] in work devoted to
finding good subgroup sets that trade off quality and diversity; algorithms were
designed to find a skyline of subgroup sets in this two-dimensional evaluation
space. Neither of these works explicitly use the skyline/convex hull/pareto front
as a leading device for the search process. Mampaey et al. [14] do consider
only those subgroup refinements that lie on the convex hull in ROC space for
advancement of the search process, but this work requires the employed quality
measure to be convex, while ROCsearch does not impose such restrictions.

5 Beyond Local Pattern Mining

ROC analysis is well understood in Local Pattern Mining, which is why the
benefit of ROCsearch for Subgroup Discovery is immediately intuitively clear.
However, we think that the applicability of the ROC convex hull/skylines/pareto
fronts as a device to bound a heuristic search process is not necessarily limited
to the subfield of Local Pattern Mining.

Since ROC analysis is well understood in classification as well, this sub-
field of machine learning could also benefit from ROC-guided search. A similar
strategy has been explored in the SAYU algorithm [15]. In this work, classifi-
cation performance is improved by combining ILP rule induction with Bayesian
network learning. Instead of the traditional two-step process, where classifica-
tion rules are learned first and an encompassing classifier is learned afterwards,
SAYU interleaves the two steps: the encompassing classifier is constructed while
rules are still being learned. Throughout the process, a Bayesian network struc-
ture is maintained that holds the encompassing classifier model; experiments are
performed with the Naive Bayes and Tree Augmented Naive Bayes structures.
Candidate rules are evaluated based on by how much they improve the classifier,
which is gauged in precision-recall space. Since this space is equivalent to ROC
space, a ROC-guided heuristic search is at work here.

Another field where the ideas for ROCsearch can provide inspiration is that
of Feature Subset Selection [16]. This task deals with selecting from the initial
set of features a relatively small subset for which subsequent modeling is both
more feasible computationally and possibly more accurate. One of the obvious
approaches to FSS, especially when subsequent modeling over the feature subset



comes in the form of building classifiers, is known as a wrapper approach. In
such an approach, candidate feature subsets are tested by means of a classifier,
and the search for optimal subsets is guided by how well the classifier performs
on the candidate. Now, when no prior assignment of misclassification costs is
given, it makes sense to judge subsets/classifiers on the basis of their FPR/TPR.
Hence, each candidate subset is associated with a point in ROC-space. A naive
implementation of this approach would consider all 2n subsets of the total n
features, and finally report the few feature subsets that form the convex hull in
ROC-space, or possibly all subsets of at most k < n features. Clearly, this would
be unattractive from a computational perspective. One could argue, however,
that for any of the resulting feature sets, the subset is composed of sub-subsets
that are also fairly good, and therefore close to the final convex hull. A promising
algorithm would therefore generate all subsets of k = 1 features (in other words,
n individual features), and determine the convex hull of these n points. Then,
only the subsets on the CH will be tentatively extended with any of the features,
to form 2-subsets. The algorithm would thus proceed until k-subsets, essentially
mimicking the ROCsearch process for SD, where the role of the subgroups is
now taken by the feature sets. The algorithm would report the few subsets on
the CH, and it is hoped that these subsets are very similar to those produced
by the naive, exhaustive approach.

In the tasks discussed so far, the evaluation space can be naturally decom-
posed into the two dimensions that make up ROC space. For other tasks, this
space may be higher-dimensional; consider for instance classification with a nom-
inal target having v > 2 distinct values, which cannot be handled naturally with
a one-versus-all strategy — classifiers for such multi-way nominal targets can be
analyzed in v(v − 1)-dimensional ROC space [17]. A convex-hull-driven search
strategy such as ROCsearch cannot be directly ported to such a setting with-
out loss of performance (in terms of either result quality or runtime), since a
higher-dimensional convex hull is computationally expensive. ROCsearch can
however be made applicable on higher-dimensional output spaces by using ran-
dom projection techniques. Both volume-preserving random projections [18] and
high-dimensional randomly-projected simplices [19] have been studied, and the
derived bounds may teach us what can be expected when a heuristic search
with a high-dimensional output space is guided by a convex hull strategy on a
randomly projected subspace. A similar random projection approach has been
developed for one-class classification [20], though no convex hull guided search
was involved; exploring this strategy should be beneficial for Subgroup Discov-
ery with multi-dimensional responses [21], or multi-label classification [22]. One
could also imagine improving on the traditional hyperparameter grid search for
Support Vector Machines [23], by combining random projections with convex-
hull-driven search.



6 Conclusions

Previously, we have introduced ROCsearch, a beam search variant for Sub-
group Discovery that configures its search width automatically, tuning the pa-
rameter to the peculiarities of the dataset at hand. Breaking into the traditional
beam selection strategy, ROCsearch selects those subgroups that lie on the con-
vex hull in ROC space as the beam for the next level. These subgroups do not
necessarily maximize the SD quality measure, but they are optimal in another
sense: each subgroup on the convex hull has minimal cost for a cost assignment
to false positives and false negatives. Moreover, the number of subgroups on the
convex hull is automatically determined, hence does not have to be set before-
hand. Apart from the beneficial autoconfiguration, ROCsearch has obtained
results with equivalent quality an order of magnitude faster when compared to
traditional beam search on the Subgroup Discovery task.

Since the concepts underlying ROCsearch should be applicable more widely
than just on Subgroup Discovery, we discuss the algorithm and its potential fur-
ther deployment in this paper. A related strategy has been employed in a rule-
based naive Bayes classification setting, and application on other simple classi-
fiers should be straightforward. We propose a Feature Subset Selection scheme
that uses a search process driven by ROC analysis, just like ROCsearch. When
the evaluation space of a learning task is higher-than-two-dimensional, convex-
hull-driven search strategies can be applied by employing random projections,
thus counteracting the otherwise prohibitive computational cost of computing
the high-dimensional convex hull. We think that such a strategy has the po-
tential to improve the focus of any learning task where currently some form
of heuristic search is employed; the automatic parameter tuning provided by a
convex-hull-driven strategy begs to be exploited throughout our field.
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