
Ad-hoc Workflow: Problems and Solutions

M. Voorhoeve and W. van der Aalst

Dept. of Mathematics and Computing Science
Eindhoven University of Technology

Eindhoven, The Netherlands, 5600MB

Abstract
The paper introduces ad-hoc workflow, addingpexibil-

ity to traditional workjlow. A problem that stems from the
addedjexibility is the need to support end-users in the se-
lection and modification of the process for a specific case.
We propose a class of Petri nets to describe workflow pro-
cesses, featuring safeness and guaranteed termination. A
set of transformation rules with sufJicient power for this
class is given that can be implemented in a graphical ed-
itor A second problem is monitoring the work being done.
The solution here is to approximate the states of the cases
being treated by the states of a few standard cases.

1 Introduction
Workflow management systems support the daily opera-

tion of business processes by taking care ofthe logisticcon-
trol of work (cf. WFMC[7], Koulopoulos[4], Ellis/Nutt[2]).
Current workflow products support production workflow,
where cases are handled according to a fixed definition of
the tasks to be performed and their order. Production work-
flow is characterized by a high frequency and a high level of
standardization. The flow of cases can be monitored closely
and the occurrence of bottlenecks and slack can be identi-
fied and acted upon.

Groupware systems support less structured cooperative
work. Here the tasks within a case and their order are not
fixed, but can be added and modified as the case proceeds
within the organization. The added flexibility has its price,
though, as it becomes harder to support and control the on-
going work.

In this paper, we introduce the term ad-hoc workjow for
processes between the extremes sketched above. Each case
is derived from a template process that can be modified to
meet specific needs. The templates do not prescribe in de-
tail how cases are to be handled, but allow a certain degree
of flexibility.

The organization and distribution of work in processes
belongs to the realm of concurrency theory. We use Petri
nets in this paper to describe concurrent processes. Petri
Nets (cf. Reisig[S]) offer a model for concurrency that is

0-8186-8147-0197 $10.00 0 1997 IEEE

simple and easily explained to non-specialists. We very
briefly describe the Petri net concepts that are of importance
to this paper.

A net consists of nodes that are connected through di-
rected arcs. There are two kinds of nodes: transitions (de-
picted as rectangles) and places (depicted as circles); arcs
only connect nodes of different kinds. A state or marking of
a net is a bag (multiset) of tokens (depicted as dots). Each
token belongs to a place in the net. Markings are related to
one another by the successor relation; given a marking S, a
transition t may$re, leading to a new marking S’. This new
marking is obtained by removing a token along each incom-
ing arc of t (if this is impossible t may not fire) and adding a
token along each outgoing arc. The reflexive-transitive clo-
sure of the successor relation is the reachability relation. A
marking with no successors is said to deadlock.

Nets can be structured by hierarchical decomposition
into subnets. Petri net models for processes can be con-
structed directly or indirectly from other formalisms (e.g.
process calculi like CCS).

2 Nature
Ad-hoc workflow is based on process templates. These

templates provide the procedural backbone that can be
filled in and varied upon to accommodate the requirements
of individual cases. Hierarchy is of prime importance. The
higher level templates typically allow for little variation,
whereas the lower levels tend to be case dependent and can
be modified as the case proceeds.

The
”Wwwizz” agency offers support to companies for pre-
senting themselves on the Internet. The agency gives
courses, develops company-specific style guidelines and
develops and maintains web sites. Figure 1 gives the top-
level template for its activity.

Figure 1 contains two subnets. Prospective customers
enter the acquisition subnet (acq). They then either leave
through thej le transition or become customers upon enter-
ing the cons subnet. After leaving this subnet, the clients
have a web site and guidelines that can be maintained

An example is given to illustrate the concept.

36

.
maint t-r’

file file

Figure 1 : WWWizz top-level template

(maint) for some time, until the case is closed.

A B

I ‘9
t

Figure 2: WWWizz (cons) template and modifications

Case-specific variations appear on the lower levels. Fig-
ure 2 gives the construction (cons) subnet template (A) with
modifications (B , C). The template prescribes a guidelines
creation phase, followed by guidelines maintenance and re-
lease, after which web pages are constructed, maintained
and released.

The modification B allows page construction to start af-
ter the initial guidelines creation to get a site on the web as
soon as possible. C has a negotiation phase for the inclu-
sion of material belonging to third parties before guidelines
release.

The template in ad-hoc workflow is a kind of reference
model for the process to be executed. The template can be
adapted for specific cases at any moment during the case’s
processing. This may involve changing the order of the
tasks to be executed (like net B in Figure 2), adding (like
net C in Figure 2) and removing tasks. Templates may even
contain “generic tasks” that may be instantiated with what-
ever process, allowing a free exchange of work (i.e. group-
ware) at some stages.

Clearly, ad-hoc workflow requires frequent definition
and modification of processes, which is an error-prone ac-
tivity. So good process definition support is necessary.
Another problem is the way to trace, track and manage
the cases flowing through the organization. Fixed process
specifications help in assessing the state of the cases in or-
der to identify bottlenecks and take measures to resolve
them. In ad-hoc workflow this becomes harder, due to the
large variation of processes.

3 Process definition support
As indicated above, process definition support should

enable end users to modify template processes in order to
fit the needs of a specific case. A graphical and easy-to-
understand definition formalism for processes (like Petri
nets) is important here. As described in Aalst[l], workflow
processes can be represented by a class of Petri nets called
WF nets.

When modeling a process by a WF net, its transitions
represent the tasks to be performed, whereas its places rep-
resent conditions that enable them. The reachable markings
represent the possible states of the process. A WF net W
must possess places i and o as its only source resp. sink
node. Its initial marking I consists of a single token in i.
Likewise, the terminal marking 0 consists of a single token
in 0. No marking may be reached that contains a token in o
but 0. Clearly, 0 deadlocks; this is interpreted as success-
ful termination. Any other deadlock marking is interpreted
as an error. From any marking S reachable from I , the ter-
minal marking must be reachable, so erroneous deadlocks
may not occur. In addition, for every transition t in W there
exists a marking S reachable from Z such that t can fire.

The safe WF (SWF) nets have the additional require-
ment that every marking reachable from I contains at most
one token per place. Algorithms that check the WF or SWF
properties of nets do exist; in fact a tool (WOFLAN[3]) has
been built around them. Note that the example nets in Fig-
ures 1 and 2 are SWF nets.

We suggest the following strategy for defining SWF nets
serving as process templates and adaptations. Point of de-
parture is a library of basic SWF net templates. From them,
new SWF nets can be derived by modifying and combining
them in prescribed ways.

A first construction that comes to mind is rejinement (see

Figure 3), substituting in an SWF net V a transition t with
one input and one output place by another SWF net W . The
entry place of W is fused with the input place o f t and its
exit place with the output place of t . The inverse operation
replaces an SWF subnet by a transition.

v v 8, refine
d

Figure 3: Refinement

Refinement has the property that applying it in either di-
rection upon SWF nets results in an SWF net. The same
does not hold for WF nets, as shown by the following ex-
ample (Figure 4). Here a non-safe WF net V is shown con-
taining a transition t . Refining t with the SWF net W results
in a non-WF net containing an erroneous deadlock.

. .

reduce

xk reduc; xMxk
.... .*.

Figure 5: Reduction

1 extend

O M 0 I 0

refine i

Figure 4: Non-WF net resulting from refinement

The reduction rule complements refinement (see Fig-
ure 5) . If two nodes a , b of a net W have the property that
b is the only output of a and a the only input of b, then
the nodes a and b may be removed from W, adding arcs
from the input nodes e l , . . . , e,, of a to the output nodes
X I , . . . , x k of b. The inverse of reduction is called exten-
sion.

The reduction and extension rules allow refinement for
transitions with any number of input and output places, like
in Figure 6. First, the extend rule is applied, adding a tran-
sition with a single input and ouput place. Next, the refine
rule is applied and finally the reduce rule is applied. The
net result is a generalized refinement.

A second group of rules is depicted in Figure 7. The and-
split rule splits a place into two places, duplicating the in-
coming and outgoing arcs. The orsplit rule does the same
with transitions. Finally the iterate rule adds a transition
connected to one and the same place.

Like before, the rules can be applied both ways. With
refinement and reduction, all lunds of derivations can be
made. In Figure 8 such a derivation is depicted, replacing a

reduce I
Figure 6: Refinement of arbitrary transition

task by two tasks in parallel, with a common start and end-
ing.

Each rule correponds to a process operator from cal-
culi like CCS and CSP. Refinement corresponds to substi-
tution of a process for an action. Extension corresponds to
sequential composition, orsplit to choice, andsplit to free
merge and iteration is a special case of recursion.

To complement the above constructions, tasks may be
synchronized. We distinguish two forms of synchroniza-
tion, depicted in Figure 9. One-way synchronization ssyn
prescribes tasks a , b to be performed in a fixed order. The
andsplit rule in Figure 7 can be considered a special case
of one-way synchronization, as it involves adding a place.
Dual synchronization dsyn prescribes tasks a , b to be per-
formed simultaneously, thus becoming a composed task c.

38

andspli t I- E
i$ orsplit &

___t *
-0-

Figure 7: Split and iterate rules

4 extend

andsplit

extend
c--

0

Figure 8: Example derivation

Synchronizing an SWF net may result in a non-SWF net,
so checks are necessary here.

A process specification session starts with selecting a
template process. From the template, refinement is possi-
ble by pointing at a transition and selecting an appropri-
ate building block. Conversely, an SWF subnet may be in-
dicated and shrunk into a single transition. Likewise, the
other rules can be invoked, indicating the subnet and build-
ing blocks that they have to operate on.

Nets thus created can be saved to use as future building
blocks. The analysis tool is used to ensure preservation of
the SWF property if necessary. Organization-specific rules
may be added e.g. to disallow the removal of certain vital
tasks from a template process.

4 Control
Controlling the flow of work is based on reports about

the progress of cases. A detailed report may be a viable ap-
proach in production workflow, but will become too large

e

RY f

f Y

f

Figure 9: Synchronizing tasks

in ad-hoc workflow due to the large variation in processes.
In order to make reports understandable, the process

template is used as a reference model for reports. For each
case, its progress with respect to the template is monitored.
The construction rules from the previous section except in-
verse synchronization allow the derivation of a function F
between the states of the modified net M and its template N
with the following properties. Let I M , I N , O M , ON be the
initial and terminal states of M and N . Then F (I M) = IN
and F (Ow) = O N . Furthermore, if a state S‘ is a successor
(one step) of S in M , then F(S’) is reachable (zero or more
steps) from F (S) in N .

Note that it is possible to modify a template in several
ways and arrive at the same end result. Different roads may
result in different correspondence functions F (having the
same domain and range). The correspondence may be more
or less accurate, i.e. the number of steps (firings of transi-
tions) to get from s to s’ may differ more or less with the
number of steps to get from F (s) to F(s’) and the nature
of these steps may differ too. The closer the modified net
stays to the template the more accurate the correspondence
becomes.

Given a template N , a modification M and a correspon-
dence function F , we can approximate a state of M in N by
means of F . By superposing (c.f. Voorhoeve/Aalst[B]) the
approximations of the states of the cases derived from N ,
a manager gets an impression of the work in progress. Of
course, other reports are rewuired as well. The important
feature is that the manager only needs to know the template
processes.

C: l-+mn--+on-p-q-,r

t t i t ’. ,
1 P‘

Figure 10: Relations between states in Figure 2

As an example, let us take the situation depicted in Fig-
ure 2. The states of the three nets, the reachability graphs

39

(sclid arrows) and the functions F (dashed arrows) are de-
picted in Figure 10. In Figure l l it is shown how the states
of three processes (A, B and C) are superposed in a single
report featuring the template process. This report fairly de-
scribes the work done so far on the cases and the work yet
to be done.

Figure 11: Individual cases states and superposition

5 Conclusion
Ad-hoc workflow is a challenging subject. Many short-

comings of current workflow management systems can be
ascribed to their lack of flexibility, resulting in models with
too many alternatives or ill-defined tasks. By incorporat-
ing ideas like the ones in this paper, a generation of flexible
workflow management systems can be created that allow
organizations to face the ever-growing demands of present-
day society.

References
[1] W. van der Aalst. Verification of Workflow Nets. In

Application and Theory of Petri Nets 1997, 18th. In-
ternational Conference, Proceedings, Lecture Notes in
Computer Science (to appear), Toulouse, France, 1997.
Springer-Verlag, Berlin, Germany.

[2] C.A. Ellis and G.J. Nutt. Modelling and enactment of
workflow systems. In M. Ajmone Marsan, editor, Ap-
plication and Theory of Petri Nets 1993, 14th. Inter-
national Conference, Proceedings, volume 69 1 of Lec-

ture Notes in Computer Science, pages 1-16. Springer-
Verlag, Berlin, Germany, 1993.

[3] D. Hauschildt, E. Verbeek, and W. van der Aalst.
Woflan: A Petri-net-based Workflow Analyzer. Com-
puting Science Reports (to appear), Eindhoven Univer-
sity of Technology, 1997.

[4] T.M. Koulopoulos. The Workjflow Imperative. Van Nos-
trand Reinhold, New York, USA, 1995.

[5] W. Reisig. Petri Nets. Springer-Verlag, Berlin, Ger-
many, 1985.

[6] M. Voorhoeve and W. van der Aalst. Conservative
Adaptation of Workflow. Computing Science Reports
96/24, Eindhoven Univetsity of Technology, 1996.

[7] W M C . Workflow Management Coalition Terminol-
ogy and Glossary. Technical Report WFMC-TC-1011,
Workflow Management Coalition, Brussels, 1996.

40

