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Open research directions

In general, I am interested in guiding MSc research projects on any
topic in data engineering (both theory and systems), broadly
conceived.

I relational data, XML data, RDF data, graph data, JSON
data, key-value data, ...

I query language design

I query language engineering

I physical and distributed storage strategies (e.g., index design)

I data privacy and security

I data integration

I (big) data analytics

I ...

In this presentation, I will talk about some of my recent research in
graph data management. I will conclude with a discussion of
several concrete research project proposals.



Open research directions

Before we jump into this presentation, I would like to introduce
three concrete research proposals with company partners

I Philips Research (Eindhoven)

I Semaku (Eindhoven)

I Semmtech (Amsterdam)



Open research directions: Philips Research

Context

I Located on the High Tech campus here in Eindhoven.

I Headquarters of the R & D arm of a large, multinational
company, so lots of potential to learn, grow, and make many
interesting connections

I 1,500 staff, 50 nationalities

I Strong connections with TU/e and the Computer Science
faculty

Focus

I is on helping Health Care researchers and professionals to
discover and understand connections between patient data
and research trial data



Open research directions: Philips Research

Project proposals

(a) Investigate and develop a general methodology for integrating
data sources in the so-called TranSMART platform with the
Common Information Model (CIM) used at Philips. The CIM
is built upon well-known ontologies such as the HL7 RIM,
SNOMED CT and LOINC. Trial (or study) data in
tranSMART does not enforce or use(s) a standard ontology.

(b) Investigate and develop flexible approaches to modeling
clinical trial information and elaborate corresponding
formalisms to support machine-processability and reasoning
with this information, to be leveraged by a range of relevant
applications in the medical domain.

Full details are posted on the seminar homepage



Open research directions: Semaku

Context

I Startup company located in the Strijp-S, here in Eindhoven

I Spin-off of NXP (located on the HTC, in Eindhoven) this year

I Early phase of R & D, so lots of potential for major impact
and professional growth

Focus

I is on development of a corporate Semantic
Framework/Platform, building on Linked Data standards, and
data management as a service. All projects are in cooperation
with NXP.



Open research directions: Semaku

Project proposals

(a) Develop an efficient standard data transformation process.
The aim is to use as much as possible a “standardized”
transformation and update propagation mechanism. The
process will be added as a basic service to the Semantic
platform, i.e., as core Base Module functionality.

(b) Data modeling: develop an optimal mix for data quality
validation when transporting data from source environments
to the meta data “cloud” triple store. These validations are a
core functionality to the Base Module and will be presented in
a Dashboard.

(c) Define a generic strategy for modeling and conversion of data
into RDF. What are the pro’s and con’s for positioning the
modeling process at source or destination location or even in
between in the enterprise services environment.

Full details are posted on the seminar homepage



Open research directions: Semmtech

Context

I Startup company located in Hoofddorp (next to Amsterdam)

I Established client base, in both public and private sectors

I Early phase of R & D, so lots of potential for major impact
and professional growth

I One successful MSc thesis project already with the WE group
(Cai 2013)

Focus

I is on development of a generic platform for maintaining and
sharing semantically structured information, leveraging Web
standards and open-source solutions



Open research directions: Semmtech

Project proposals

(a) Investigate and develop a SPARQL query builder for clients
without knowledge of SPARQL. The solution is a module in
the generic framework, and should help users understand and
reformulate executable queries on semantic data.

(b) Study and develop solutions to rate the (relative) value of a
‘resource’ in a semantic model by means of a so called
‘density-coefficient’. This coefficient should provide modelers
and/or administrators more insight into the intensity of use of
individual resources, e.g., in ranking search results.

(c) Develop approaches for modeling basic mathematical
operations and formulas within a semantic model, e.g., cost
calculations of activities, or geometrical calculations for
physical objects. After conceptualizing these formulas, the
modeled calculations can be automatically performed, using
the concepts described by the model.

Full details are posted on the seminar homepage
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What we talk about when we talk ...

Sapir-Whorf: “the structure of a language affects the ways in
which its speakers conceptualize their world” (Wikipedia)

I Wilhelm von Humboldt (1767-1835): linguistics and philology
I The heterogeneity of language and its influence on the

intellectual development of mankind (1836)

I Franz Boas (1858-1942): anthropology
I Edward Sapir (1884-1939) and Benjamin Whorf (1897-1941):

linguistics
I Language, mind, and reality (1942)

I and in sociology, psychology, philosophy, history (e.g., Kuhn’s
“Structure of scientific revolutions”, Wittgenstein’s language
games), ...

I deep and lasting impact across the sciences
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What we talk about when we talk ... about graphs

Over the past few years, my colleagues and I have been
investigating the ways in which graph query languages affect the
way in which clients structure their world.

I i.e., how the choice of query language restricts and shapes
concrete graph instances.

I will briefly survey this work, which is the result of collaborations
with my wonderful colleagues at Delft University of Technology,
Eindhoven University of Technology, Hasselt University, Indiana
University - Bloomington, and Université Libre de Bruxelles.

Full bibliographic details can be found on the last slide and on my
homepage.
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I “query” expressivity

I “instance” expressivity
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I structural indexing for efficient SPARQL query processing

part 3. research directions
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Notions of language expressivity

Codd (1972)

I How can we measure the expressive power of a database query
language?

I Codd’s solution: introduce notion of “relational completeness”

I is your language as expressive as mine (i.e., the relational
calculus)?

I ... rather ad hoc
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Notions of language expressivity

Towards language-independent notions of expressivity ....

Query expressivity (Aho & Ullman 1979, Chandra & Harel 1980)

I What is the expressive power of Codd’s relational
calculus/algebra (to formulate general functions)?

I for example,
I expressible: nonmonotonic queries
I not expressible: transitive closure

... primary focus of research community
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Notions of language expressivity

Towards language-independent notions of expressivity ....

Instance expressivity (Bancilhon and Paredaens 1978)

I What is the expressive power of Codd’s relational algebra (on
an arbitrary fixed instance)?

I fact: T is expressible from S in Codd’s algebra if and only if

atoms(T ) ⊆ atoms(S)

and
automorphism(S) ⊆ automorphism(T ).

i.e., characterization in terms of the structure of S .
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Instance expressivity

On an (arbitrary) fixed instance S , characterize output space of a
given language L

Given a source instance S and target instance T , can S
be mapped to T in L?

S T
? ∈ L

For two objects o1, o2 ∈ S, can they be distinguished by
an expression e ∈ L?

o1 ∈ e(S) o2 /∈ e(S)
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Instance expressivity

The BP result is for the relational calculus on relational databases.
Similar structural characterizations later discovered for query
languages on nested relations and object-oriented DBs.

However, no significant application was made of these results
towards engineering of data management systems.



Instance expressivity

Recent results (including applications!)

I tree structured data
I structural characterizations of XPath fragments (Gyssens et al.

PODS 2006)
I structural indexing for XPath evaluation (Fletcher et al.

Information Systems 2009, ...)

I (arbitrary) graph structured data
I structural characterizations of Tarski’s relation algebra on

directed edge-labeled graphs (Fletcher et al. ICDT 2011; arXiv
2012; FoIKS 2012)

I structural characterizations of SPARQL fragments (Fletcher et
al. DBPL 2011, Picalausa et al. ICDT 2014)

I structural indexing for accelerated SPARQL evaluation
(Picalausa et al. ESWC 2012)
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web, linked data, dataspaces, social networks,
biological networks, ...

graph structured data



Paths in graphs

Relation Algebra already proposed by Alfred Tarski in the 1940s as
a basic query language for reasoning about paths in graphs



Paths in graphs

I clear understanding of expressive power of path navigation is
essential

I we study Tarski’s relation algebra, on arbitrary graphs (as
binary relations)

I query expressiveness
I instance expressiveness



Graphs

We are interested in navigating over graphs whose edges are
labeled by symbols from a finite, nonempty set of labels Λ.

A graph is a relational structure G , consisting of

I a set of nodes V and,

I for every R ∈ Λ, a relation G (R) ⊆ V × V , the set of edges
with label R.



Graphs

For example, suppose we have

V = people ∪ hospitals ∪ diseases

and edge labels

Λ = {knows,worksAt, patientOf, hasDisease, treatsDisease}

with semantics restricted as:

knows ⊆ people × people

worksAt ⊆ people × hospitals

patientOf ⊆ people × people

hasDisease ⊆ people × diseases

treatsDisease ⊆ hospitals × diseases.



Graphs

A small fragment of such a graph

sue

saori

kotaro

st jude's

flu

            knows                                    

                                  patientOf

               worksAt

hasDisease             

sriram

                                                treatsDisease

umi

                 knows

          knows

...

knows      

migraine

hasDisease                         

...

          knows                        

                            patientOf

knows



Basic language features

Basic navigational language: algebra N whose expressions are built
recursively from

I the edge labels Λ,

I the primitive ∅, and

I the primitive id ,

using

I composition (e1 ◦ e2), and

I union (e1 ∪ e2).

On input graph G , each expression e ∈ N defines a path query
e(G ) ⊆ adom(G )× adom(G ), i.e., a binary relation on the active
domain of G .
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Basic language features

In particular, the semantics of N is inductively defined as follows:

R(G ) = G (R) ;

∅(G ) = ∅ ;

id(G ) = {(m,m) | m ∈ adom(G )} ;

e1 ◦ e2(G ) = {(m, n) | ∃p ((m, p) ∈ e1(G ) & (p, n) ∈ e2(G ))} ;

e1 ∪ e2(G ) = e1(G ) ∪ e2(G ) .



Basic language features

sue

saori

kotaro

st jude's

flu

            knows                                    

                                  patientOf

               worksAt

hasDisease             

sriram

                                                treatsDisease

umi

                 knows

          knows

...

knows      

migraine

hasDisease                         

...

          knows                        

                            patientOf

knows

Example: by person, the doctors of their friends

knows ◦ patientOf(G ) = {(umi , saori), (kotaro, saori), . . .}



Nonbasic language features

The basic algebra N is extended with the following features:

I diversity (di),

I converse (e−1),

I intersection (e1 ∩ e2),

I difference (e1 \ e2),

I projections (π1(e) and π2(e)), and,

I coprojections (π1(e) and π2(e)).

Tarski’s algebra consists of the language having all basic and
nonbasic features.



Nonbasic language features

The semantics of these language extensions is as follows:

di(G ) = {(m, n) | m, n ∈ adom(G ) & m 6= n} ;

e−1(G ) = {(m, n) | (n,m) ∈ e(G )} ;

e1 ∩ e2(G ) = e1(G ) ∩ e2(G ) ;

e1 \ e2(G ) = e1(G ) \ e2(G ) ;

π1(e)(G ) = {(m,m) | m ∈ adom(G ) & ∃n (m, n) ∈ e(G )} ;

π2(e)(G ) = {(m,m) | m ∈ adom(G ) & ∃n (n,m) ∈ e(G )} ;

π1(e)(G ) = {(m,m) | m ∈ adom(G ) & ¬∃n (m, n) ∈ e(G )} ;

π2(e)(G ) = {(m,m) | m ∈ adom(G ) & ¬∃n (n,m) ∈ e(G )} .



Nonbasic language features

sue

saori

kotaro

st jude's

flu

            knows                                    

                                  patientOf

               worksAt

hasDisease             

sriram

                                                treatsDisease

umi

                 knows

          knows

...

knows      

migraine

hasDisease                         

...

          knows                        

                            patientOf

knows

Example: people with untreatable diseases

hasDisease \ (hasDisease ◦ π2(treatsDisease))(G ) =

{(sue,migraine), . . .}



Language equivalence

A marked structure G is a triple (G , a, b) where G is a graph, and
(a, b) is an ordered pair of nodes from G .

For two marked structures G1 = (G1, a1, b1) and G2 = (G2, a2, b2),
we write G1 ≡ G2 if G1 and G2 are indistinguishable in the RA,
i.e., for every expression e in the algebra, whenever
(a1, b1) ∈ e(G1), it also holds that (a2, b2) ∈ e(G2), and vice versa.



Structural equivalence

Let G1 and G2 be two graphs with node sets V1 and V2,
respectively. A non-empty relation Z ⊆ V 2

1 × V 2
2 is a bisimulation

between G1 and G2 if it satisfies the following conditions

Atoms if (a1, b1, a2, b2) is in Z , then (a1, b1) ∈ R(G1) if and
only if (a2, b2) ∈ R(G2), for all R ∈ Λ;

Forth if (a1, b1, a2, b2) ∈ Z , then

I for each c1 ∈ V1 there exist c2 ∈ V2 such that
both (a1, c1, a2, c2) and (c1, b1, c2, b2) are in Z ;

I if a1 = b1 then a2 = b2; and,
I (b1, a1, b2, a2) ∈ Z .

Back is the same as Forth, only with the roles of G1 and
G2 reversed.
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Structural equivalence

A marked structure G1 = (G1, a1, b1) is said to be bisimilar to a
marked structure G2 = (G2, a2, b2) if there is a bisimulation Z
between G1 and G2 containing (a1, b1, a2, b2).

Coupling Theorem

Let G1 = (G1, a1, b1) and G2 = (G2, a2, b2) be finite marked
structures. Then

G1 ≡ G2 ⇔ G1 is bisimilar to G2.

We similarly obtained novel bisimulation characterizations for a
wide range of fragments of the algebra.

For positive algebra fragments, we similarly obtained new
simulation characterizations, where the Back condition is dropped.
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Structural indexing

Up to this point, our investigations of Tarski’s algebra have
focused on the relative expressive power of the various fragments
of the algebra.

We have also obtained structural characterizations for a core
fragment of SPARQL, the W3C’s recommendation language for
the RDF graph data model, with an eye towards “structural” index
design (Fletcher et al. DBPL 2011, Picalausa et al. ICDT 2014)

The basic idea here is to group together structurally equivalent
RDF triples, since the language cannot distinguish them, and build
access mechanisms on top of these “blocks.”

We then use this index to accelerate query processing on a reduced
search space (Picalausa et al. ESWC 2012).
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Partitioning massive graphs under bisimulation

Note that this approach only works if computing bisimulation
partitioning of a graph is practical.

Efficient main memory approaches to bisimulation partitioning
have been studied since the 80’s, as bisimilarity is a fundamental
notion arising in a wide range of contexts (e.g., set theory,
distributed computing, process modeling, ...).

However, there has been no approach to compute bisimulation on
massive disk-resident graphs.
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Partitioning massive graphs under bisimulation

To address this, we have developed the first I/O-efficient
approaches to bisimulation partitioning of massive graphs (Hellings
et al. SIGMOD 2012; Luo et al. CIKM 2013).

We have also developed the first effective MapReduce solution for
this problem (Luo et al. BNCOD 2013).



Structural indexing for SPARQL

SaintDB: quad-store based structural indexing and query
processing (Picalausa et al. ESWC 2012).

I We introduced the first triple-based structural index for RDF.

I This index is formally coupled to practical core fragment of
SPARQL.

I Our initial empirical study shows that the approach is
profitable

I Empirical analysis on community benchmark data/queries
demonstrates competitiveness with RDF-3X on broad range of
query scenarios, with up to multiple orders of magnitude
reduction in query processing costs.
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Open research directions

In general, I am interested in guiding MSc research projects on any
topic in data engineering (both theory and systems), broadly
conceived.

I relational data, XML data, RDF data, graph data, JSON
data, key-value data, ...

I query language design

I query language engineering

I physical and distributed storage strategies (e.g., index design)

I data privacy and security

I data integration

I (big) data analytics

I ...



Open research directions

(a) Building on the work on path indexing for tree-structured data,
study structural path indexing and query optimization for
fragments of Tarski’s algebra on graph-structured data. (see
Fletcher et al. Information Systems, 2009; and Sof́ıa Brenes
Barahona, Structural summaries for efficient XML query
processing, PhD thesis, Indiana University, Bloomington, 2011)

(b) Luo et al. (CIKM 2013) just use flat files and other simple data
structures, to establish I/O efficient bisimulation. Study more
sophisticated data structures and (join) algorithms, towards
applications of the partition (e.g., in path query processing).

(c) Picalausa et al. (ESWC 2012) studied three basic approaches
to physical plan optimization/generation over the quad-store
representation of a bisimulation-partitioned triple store. Develop
and study a general framework for query optimization over RDF
structural indexes.
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Open research directions

(d) Study other basic applications of structural characterizations of
query languages, e.g.,

I query language design in social network analysis (cf. Marx and
Masuch, Social Networks 25(1), 2003; Fan ICDT 2012)

I structure-sensitive privacy and security mechanisms

I dynamic structure (e.g., ontology) extraction, via
language-distinguishability (cf. Cai, MSc Thesis, TU/e, 2013)

I visualizing language-induced structures (e.g., interplay of
ontological knowledge)



Open research directions

(e) Structure preserving network sampling: how to preserve graph
structure while sampling massive graphs (e.g., the sample should
have the same degree-distribution structure and the same
bisimulation reduction graph as the original graph, or some good
approximation(s) thereof).

(f) JSON vs. XML: what is different? what is the same? Study
JSON native storage and indexing (external memory and
distributed), for JSONiq queries.
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