
MOA: Massive Online Analysis, a Framework
for Stream Classification and Clustering.

Albert Bifet1, Geoff Holmes1, Bernhard Pfahringer1,
Philipp Kranen2, Hardy Kremer2, Timm Jansen2, and Thomas Seidl2

1 Department of Computer Science, University of Waikato, Hamilton, New Zealand
{abifet, geoff, bernhard}@cs.waikato.ac.nz

2 Data Management and Exploration Group, RWTH Aachen University, Germany
{kranen, kremer, jansen, seidl}@cs.rwth-aachen.de

Abstract. In today’s applications, massive, evolving data streams are
ubiquitous. Massive Online Analysis (MOA) is a software environment
for implementing algorithms and running experiments for online learn-
ing from evolving data streams. MOA is designed to deal with the chal-
lenging problems of scaling up the implementation of state of the art
algorithms to real world dataset sizes and of making algorithms compa-
rable in benchmark streaming settings. It contains a collection of offline
and online algorithms for both classification and clustering as well as
tools for evaluation. Researchers benefit from MOA by getting insights
into workings and problems of different approaches, practitioners can
easily compare several algorithms and apply them to real world data
sets and settings. MOA supports bi-directional interaction with WEKA,
the Waikato Environment for Knowledge Analysis, and is released under
the GNU GPL license. Besides providing algorithms and measures for
evaluation and comparison, MOA is easily extensible with new contri-
butions and allows the creation of benchmark scenarios through storing
and sharing setting files.

1 Introduction

Nowadays data is generated at an increasing rate from sensor applications, mea-
surements in network monitoring and traffic management, log records or click-
streams in web exploring, manufacturing processes, call detail records, email,
blogging, twitter posts and others. In fact, all data generated can be considered
as streaming data or as a snapshot of streaming data, since it is obtained from
an interval of time.

In data stream scenarios data arrives at high speed strictly constraining pro-
cessing algorithms in space and time. To adhere to these constraints, specific
requirements have to be fulfilled by the stream processing algorithms that are
different from traditional batch processing settings. The most significant require-
ments are the following:

3



2

Requirement 1 Process an example at a time, and inspect it at most once
Requirement 2 Use a limited amount of memory
Requirement 3 Work in a limited amount of time
Requirement 4 Be ready to predict at any time

Stream learning algorithms are an important type of stream processing algo-
rithms: In a repeated cycle, the learned model is constantly updated to reflect the
incoming examples from the stream. They do so without exceeding their mem-
ory and time bounds. After processing an incoming example, the algorithms are
always able to output a model. Typical learning tasks in stream scenarios are
classification, outlier analysis, and clustering.

Since a multitude of algorithms exist for stream learning scenarios, a thorough
comparison by experimental evaluation is crucial. In most publications, newly
proposed algorithms are only compared to a small subset or even none of the
competing solutions, making the assessment of their actual effectiveness tough.
Moreover, the majority of experimental evaluations use only small amounts of
data. In the context of data streams this is disappointing, because to be truly
useful the algorithms need to be capable of handling very large (potentially
infinite) streams of examples. Demonstrating systems only on small amounts of
data does not build a convincing case for capacity to solve more demanding data
stream applications [27].

In traditional batch learning scenarios, evaluation frameworks were intro-
duced to cope with the comparison issue. One of these frameworks is the well-
known WEKA Data Mining Software that supports adding new algorithms and
evaluation measures in a plug-and-play fashion [21, 32, 31]. As data stream learn-
ing is a relatively new field, the evaluation practices are not nearly as well re-
searched and established as they are in the traditional batch setting.

For this purpose we introduceMassive Online Analysis (MOA) [8], a frame-
work for stream learning evaluation that builds on the work in WEKA. MOA
contains state-of-the-art algorithms and measures for both stream classification
and stream clustering and permits evaluation of data stream mining algorithms
on large streams, in the order of tens of millions of examples where possible, and
under explicit memory limits. The main contributions and benefits of the MOA
framework are:

– Analysis and comparison both for different approaches (new and state-of-
the-art algorithms) and for different (large) streaming setting

– Creation and usage of benchmark settings for comparable and repeatable
evaluation of stream mining algorithms

– Open source framework that is easily extensible for data feeds, algorithms
and evaluation measures

In the following we first introduce the general architecture of MOA before
describing how to use it for classification and clustering on evolving data streams.
Section 5 points to additional material including source codes and tutorials and
Section 6 concludes the paper.

4

2



3

2 System architecture

A simplified system architecture is illustrated in Figure 1. It shows at the same
time the work flow of MOA and its extension points, since all aspects follow
the same principle. First a data feed is chosen, then a learning algorithm is
configured, i.e. a stream classification or stream clustering algorithm and finally
an evaluation method is chosen to analyze the desired scenario. The choice of
streams, algorithms and especially evaluation methods differs between the classi-
fication and clustering parts and is therefore described separately in the following
sections. For both tasks, users can extend the framework in all three aspects to
add novel data generators, algorithms or evaluation measures. To run experi-
ments using MOA users can chose between the command line or a graphical
user interface.

Generally, MOA permits to define three environments that are simulated
using memory limits, since memory limits cannot be ignored and can significantly
limit capacity to learn from data streams. Potential practical deployment of data
stream learning algorithms has been divided into scenarios of increasing memory
utilization, from the restrictive sensor environment, to a typical consumer grade
handheld PDA environment, to the least restrictive environment of a dedicated
server.

Sensor Network This environment represents the most restrictive case, learn-
ing in 100 kilobytes of memory. Because this limit is so restrictive, it is an
interesting test case for algorithm efficiency.

Handheld Computer In this case the algorithm is allowed 32 megabytes of
memory. This simulates the capacity of lightweight consumer devices de-
signed to be carried around by users and fit into a shirt pocket.

Server This environment simulates either a modern laptop/desktop computer
or server dedicated to processing a data stream. The memory limit assigned
in this environment is 400 megabytes. Considering that several algorithms
have difficulty in fully utilizing this much working space, it seems sufficiently
realistic to impose this limit.

MOA�Framework

data feed/ learning evaluationdata�feed/�
generator

learning�
algorithm

evaluation�
method Results

Extension�points

Fig. 1. Architecture, extension points and work flow of the MOA framework.

5



4

3 Classification

In this section we detail the features and the usage of stream classfication in
MOA.

3.1 Data streams generators for stream classification

Considering data streams as data generated from pure distributions, MOA mod-
els a concept drift event as a weighted combination of two pure distributions that
characterizes the target concepts before and after the drift. Within the frame-
work, it is possible to define the probability that instances of the stream belong
to the new concept after the drift. It uses the sigmoid function, as an elegant
and practical solution [9, 10].

MOA contains the data generators most commonly found in the literature.
MOA streams can be built using generators, reading ARFF files, joining sev-
eral streams, or filtering streams. They allow for the simulation of a potentially
infinite sequence of data. The following generators are currently available:

SEA Concepts Generator This artificial dataset contains abrupt concept drift,
first introduced in [42]. It is generated using three attributes, where only the
two first attributes are relevant. All three attributes have values between 0
and 10. The points of the dataset are divided into 4 blocks with different
concepts. In each block, the classification is done using f1 + f2 ≤ θ, where
f1 and f2 represent the first two attributes and θ is a threshold value. The
most frequent values are 9, 8, 7 and 9.5 for the data blocks.

STAGGER Concepts Generator They were introduced by Schlimmer and
Granger in [39]. The STAGGER Concepts are boolean functions of three
attributes encoding objects: size (small, medium, and large), shape (circle,
triangle, and rectangle), and colour (red,blue, and green). A concept de-
scription covering either green rectangles or red triangles is represented by
(shape= rectangle and colour=green) or (shape=triangle and colour=red).

Rotating Hyperplane It was used as testbed for CVFDT versus VFDT in [25].
A hyperplane in d-dimensional space is the set of points x that satisfy

d∑
i=1

wixi = w0 =
d∑

i=1

wi

where xi, is the ith coordinate of x. Examples for which
∑d

i=1 wixi ≥ w0 are

labeled positive, and examples for which
∑d

i=1 wixi < w0 are labeled nega-
tive. Hyperplanes are useful for simulating time-changing concepts, because
we can change the orientation and position of the hyperplane in a smooth
manner by changing the relative size of the weights. We introduce change to
this dataset adding drift to each weight attribute wi = wi + dσ, where σ is
the probability that the direction of change is reversed and d is the change
applied to every example.

6

simulattt
and posss
e size offf



5

Random RBF Generator This generator was devised to offer an alternate
complex concept type that is not straightforward to approximate with a
decision tree model. The RBF (Radial Basis Function) generator works as
follows: A fixed number of random centroids are generated. Each center has
a random position, a single standard deviation, class label and weight. New
examples are generated by selecting a center at random, taking weights into
consideration so that centers with higher weight are more likely to be chosen.
A random direction is chosen to offset the attribute values from the central
point. The length of the displacement is randomly drawn from a Gaussian
distribution with standard deviation determined by the chosen centroid. The
chosen centroid also determines the class label of the example. This effec-
tively creates a normally distributed hypersphere of examples surrounding
each central point with varying densities. Only numeric attributes are gener-
ated. Drift is introduced by moving the centroids with constant speed. This
speed is initialized by a drift parameter.

LED Generator This data source originates from the CART book [11]. An
implementation in C was donated to the UCI [4] machine learning repository
by David Aha. The goal is to predict the digit displayed on a seven-segment
LED display, where each attribute has a 10% chance of being inverted. It
has an optimal Bayes classification rate of 74%. The particular configuration
of the generator used for experiments (led) produces 24 binary attributes,
17 of which are irrelevant.

Waveform Generator The goal of the task is to differentiate between three
different classes of waveform, each of which is generated from a combination
of two or three base waves. The optimal Bayes classification rate is known
to be 86%.

Function Generator It was introduced by Agrawal et al. in [3], and was a com-
mon source of data for early work on scaling up decision tree learners.The
generator produces a stream containing nine attributes, six numeric and
three categorical. Although not explicitly stated by the authors, a sensible
conclusion is that these attributes describe hypothetical loan applications.
There are ten functions defined for generating binary class labels from the at-
tributes. Presumably these determine whether the loan should be approved.

3.2 Classifiers methods

MOA contains several classifier methods such as: Naive Bayes, Decision Stump,
Hoeffding Tree, Hoeffding Option Tree, Bagging, Boosting, Bagging using ADWIN,
and Bagging using Adaptive-Size Hoeffding Trees.

A Hoeffding tree [15] is an incremental, anytime decision tree induction al-
gorithm that is capable of learning from massive data streams, assuming that
the distribution generating examples does not change over time. Hoeffding trees
exploit the fact that a small sample can often be enough to choose an opti-
mal splitting attribute. This idea is supported mathematically by the Hoeffd-
ing bound, which quantifies the number of observations (in our case, examples)
needed to estimate some statistics within a prescribed precision (in our case, the

7



6

goodness of an attribute). More precisely, the Hoeffding bound states that with
probability 1− δ, the true mean of a random variable of range R will not differ
from the estimated mean after n independent observations by more than:

ε =

√
R2 ln(1/δ)

2n
.

A theoretically appealing feature of Hoeffding Trees not shared by other in-
cremental decision tree learners is that it has sound guarantees of performance.
Using the Hoeffding bound one can show that its output is asymptotically nearly
identical to that of a non-incremental learner using infinitely many examples.

Hoeffding Option Trees [34] are regular Hoeffding trees containing additional
option nodes that allow several tests to be applied, leading to multiple Hoeffding
trees as separate paths. They consist of a single structure that efficiently repre-
sents multiple trees. A particular example can travel down multiple paths of the
tree, contributing, in different ways, to different options.

ADWIN [7] is a change detector and estimator that solves in a well-specified way
the problem of tracking the average of a stream of bits or real-valued numbers.
ADWIN keeps a variable-length window of recently seen items, with the prop-
erty that the window has the maximal length statistically consistent with the
hypothesis “there has been no change in the average value inside the window”.

Bagging using ADWIN [10] is based on the online bagging method of Oza and
Rusell [33] with the addition of the ADWIN algorithm as a change detector. When
a change is detected, the worst classifier of the ensemble of classifiers is removed
and a new classifier is added to the ensemble.

Adaptive-Size Hoeffding Trees (ASHT) [10] are derived from the Hoeffding
Tree algorithm with the following differences: they have a value for the maximum
number of split nodes, or size, and after one node splits, they delete some nodes to
reduce its size if it is necessary. The intuition behind this method is as follows:
smaller trees adapt more quickly to changes, and larger trees perform better
during periods with little or no change, simply because they were built on more
data.

3.3 Evaluation methods for stream classification

In traditional batch learning the problem of limited data is overcome by analyz-
ing and averaging multiple models produced with different random arrangements
of training and test data. In the stream setting the problem of (effectively) un-
limited data poses different challenges. One solution involves taking snapshots
at different times during the induction of a model to see how much the model
improves.

The evaluation procedure of a learning algorithm determines which examples
are used for training the algorithm, and which are used to test the model output
by the algorithm. When considering what procedure to use in the data stream
setting, one of the unique concerns is how to build a picture of accuracy over
time. Two main approaches arise:

8



7

Fig. 2. MOA Graphical User Interface

– Holdout: When traditional batch learning reaches a scale where cross-
validation is too time consuming, it is often accepted to instead measure
performance on a single holdout set. This is most useful when the division
between train and test sets has been pre-defined, so that results from differ-
ent studies can be directly compared.

– Interleaved Test-Then-Train or Prequential: Each individual example
can be used to test the model before it is used for training, and from this
the accuracy can be incrementally updated. When intentionally performed
in this order, the model is always being tested on examples it has not seen.
This scheme has the advantage that no holdout set is needed for testing,
making maximum use of the available data. It also ensures a smooth plot of
accuracy over time, as each individual example will become increasingly less
significant to the overall average [20].

MOA contains the above mentioned stream generators, classifiers and eval-
uation methods. Figure 2 shows the MOA graphical user interface. However, a
command line interface is also available.

A non-trivial example of the EvaluateInterleavedTestThenTrain task creat-
ing a comma separated values file, training the HoeffdingTree classifier on the
WaveformGenerator data, training and testing on a total of 100 million exam-
ples, and testing every one million examples, is encapsulated by the following
commandline:

java -cp .:moa.jar:weka.jar -javaagent:sizeofag.jar moa.DoTask \

"EvaluateInterleavedTestThenTrain -l HoeffdingTree \

-s generators.WaveformGenerator \

-i 100000000 -f 1000000" > htresult.csv

MOA is easy to use and extend. A simple approach to writing a new classifier
is to extend moa.classifiers.AbstractClassifier, which will take care of
certain details to ease the task.

9



8

MOA�Framework:�Clustering a)�Open�current�result
in�WEKA�explorer

data�feed/�
generator

clustering�
algorithm

evaluation�
measure

b)�Store�measures
to�.csv file

c)�Visualize�clustering

oi
nt
s

and�measures�online

tr
ea
m
.

va va

te
ns
io
n�
po

us
te
ri
ng
St

us
te
re
r.j
av

ea
su
re
.ja
v

Ex
t

Cl
u

Cl
u

M
e

Fig. 3. Left: Extension points and work flow of the MOA stream clustering framework.
Right: Option dialog for the RBF data generator (by storing and loading settings
benchmark streaming data sets can be shared for repeatability and comparison).

4 Clustering

The stream clustering component of MOA has the following main features:

– data generators for stream clustering on evolving streams (including events
like novelty, merge, etc. [41]),

– a set of state-of-the-art stream clustering algorithms,
– evaluation measures for stream clustering,
– visualization tools for analyzing results and comparing different settings.

The left part of figure 3 shows the extension points of MOA stream clustering
and thereby illustrates the architecture as well as the usage of the clustering
component. First a data feed is chosen and configured, then a stream clustering
algorithm and its settings are fixed, then a set of evaluation measures is selected
and finally the experiment is run to obtain and analyze the result. We detail
these four aspects in the following subsections.

4.1 Data feeds and data generators

For stream clustering we added new data generators that support the simulation
of cluster evolution events such as merging or disappearing of clusters [41].

The right part of figure 3 shows a screenshot of the configuration dialog for
our RBF data generator with events. Generally the dimensionality, number and
size of clusters can be set as well as the drift speed, decay horizon (aging) and
noise rate etc. Events constitute changes in the underlying data model such as
growing of clusters, merging of clusters or creation of new clusters [41]. Using the
event frequency and the individual event weights, one can study the behaviour
and performance of different approaches on various settings. Finally, the settings

10



9

for the data generators can be stored and loaded, which offers the opportunity
of sharing settings and thereby providing benchmark streaming data sets for
repeatability and comparison. New data feeds and generators can be added to
the MOA framework by implementing the ClusteringStream interface (further
description and source code can be found on the MOA website, cf. Section 5).

4.2 Stream clustering algorithms

Currently MOA contains several stream clustering methods including:

– StreamKM++ [1]: It computes a small weighted sample of the data stream
and it uses the k-means++ algorithm as a randomized seeding technique
to choose the first values for the clusters. To compute the small sample, it
employs coreset constructions using a coreset tree for speed up.

– CluStream [2]: It maintains statistical information about the data using
micro-clusters. These micro-clusters are temporal extensions of cluster fea-
ture vectors. The micro-clusters are stored at snapshots in time following
a pyramidal pattern. This pattern allows to recall summary statistics from
different time horizons.

– ClusTree [28]: It is a parameter free algorithm automatically adapting to the
speed of the stream and it is capable of detecting concept drift, novelty, and
outliers in the stream. It uses a compact and self-adaptive index structure
for maintaining stream summaries.

– Den-Stream [13]: It uses dense micro-clusters (named core-micro-cluster) to
summarize clusters. To maintain and distinguish the potential clusters and
outliers, this method presents core-micro-cluster and outlier micro-cluster
structures.

– D-Stream [43]: This method maps each input data record into a grid and
it computes the grid density. The grids are clustered based on the density.
This algorithm adopts a density decaying technique to capture the dynamic
changes of a data stream.

– CobWeb [18]. One of the first incremental methods for clustering data. It
uses a classification tree. Each node in a classification tree represents a class
(concept) and is labeled by a probabilistic concept that summarizes the
attribute-value distributions of objects classified under the node.

The set of algorithms is extensible through classes that implement the inter-
face Clusterer.java. These are added to the framework via reflections on start
up. The three main methods of this interface are

– void resetLearningImpl(): a method for initializing a clusterer learner

– void trainOnInstanceImpl(Instance): a method to train a new instance

– Clustering getClusteringResult(): a method to obtain the current clus-
tering result for evaluation or visualization

11



10

Internal measures External measures

Gamma [5] Rand statistic [35]
C Index [24] Jaccard coefficient [19]
Point-Biserial [30] Folkes and Mallow Index [19]
Log Likelihood [22] Hubert Γ statistics [23]
Dunn’s Index [17] Minkowski score [12]
Tau [37] Purity [44]
Tau A [24] van Dongen criterion [16]
Tau C [24] V-measure [38]
Somer’s Gamma [24] Completeness [38]
Ratio of Repetition [24] Homogeneity [38]
Modified Ratio of Repetition [24] Variation of information [29]
Adjusted Ratio of Clustering [24] Mutual information [14]
Fagan’s Index [24] Class-based entropy [40]
Deviation Index [24] Cluster-based entropy [44]
Z-Score Index [24] Precision [36]
D Index [24] Recall [36]
Silhouette coefficient [26] F-measure [36]
Table 1. Internal and external clustering evaluation measures.

4.3 Stream clustering evaluation measures

For cluster evaluation various measures have been developed and proposed over
the last decades. A common classification of these measures is the separation
in so called internal measures and external measures. Internal measures only
consider the cluster properties, e.g. distances between points within one cluster
or between two different clusters. External evaluation measures compare a given
clusterings to a ground truth. Table 1 shows a selection of popular measures
from the literature. MOA contains an extensible set of both internal and external
measures that can be applied to both micro and macro clusterings. Moreover,
specialized measures that take the peculiarities of an evolving data stream into
account to fairly evaluate the performance of a stream clustering algorithm will
be included in our set of measures.

To extend the available collection with additional or novel evaluation mea-
sures one has to implement the Measure interface. The main methods are:

– void evaluateClustering(Clustering clustering, Clustering

trueClustering): uses the implemented measure to evaluate the given clus-
tering w.r.t. to the provided ground truth.

– double getLastValue(): a method that outputs the last result of the eval-
uation measure.

– double getMaxValue(), getMinValue(), getMean(): methods that pro-
vide more statistics about the measure’s distribution.

12



11

Fig. 4. Visualization tab of the clustering MOA graphical user interface.

4.4 Visualization and analysis

After the evaluation process is started, several options for analyzing the outputs
are given: a) the stream can be stopped and the current (micro) clustering result
can be passed as a data set to the WEKA explorer for further analysis or mining;
b) the evaluation measures, which are taken at configurable time intervals, can
be stored as a .csv file to obtain graphs and charts offline using a program of
choice; c) last but not least both the clustering results and the corresponding
measures can be visualized online within our framework.

Our framework allows the simultaneous configuration and evaluation of two
different setups for direct comparison, e.g. of two different algorithms on the
same stream or the same algorithm on streams with different noise levels etc.

The visualization component allows to visualize the stream as well as the
clustering results, choose dimensions for multi dimensional settings, and com-
pare experiments with different settings in parallel. Figure 4 shows a screen
shot of our visualization tab. For this screen shot two different settings of the
CluStream algorithm [2] were compared on the same stream setting (including
merge/split events every 50000 examples) and four measures were chosen for
online evaluation (F1, Precision, Recall, and SSQ). The upper part of the GUI
offers options to pause and resume the stream, adjust the visualization speed,
choose the dimensions for x and y as well as the components to be displayed
(points, micro- and macro clustering and ground truth). The lower part of the
GUI displays the measured values for both settings as numbers (left side, includ-
ing mean values) and the currently selected measure as a plot over the arrived

13



12

examples (right, F1 measure in this example). For the given setting one can see
a clear drop in the performance after the split event at roughly 160000 examples
(event details are shown when choosing the corresponding vertical line in the
plot). While this holds for both settings, the left configuration (red, CluStream
with 100 micro clusters) is constantly outperformed by the right configuration
(blue, CluStream with 20 micro clusters). A video containing an online demo of
our system can be found at our website along with more screenshot and expla-
nations. (cf. Section 5).

5 Website, Tutorials, and Documentation

MOA is open source and released under the GNU GPL License. It can be down-
loaded at:

http://moa.cs.waikato.ac.nz/

The website includes a tutorial, an API reference, a user manual, and a
manual about mining data streams. Several examples of how the software can
be used are available. Additional material regarding the extension of MOA to
stream clustering can be found at

http://dme.rwth-aachen.de/moa-datastream/

The material includes a live video of the software as well as screenshots and
explanations for the most important interfaces that are needed for extending
our framework through novel data feeds, algorithms or measures.

6 Conclusions

Our goal is to build an experimental framework for classification and clustering
on data streams similar to the WEKA framework. Our stream learning frame-
work provides a set of data generators, algorithms and evaluation measures.
Practitioners can benefit from this by comparing several algorithms in real world
scenarios and choosing the best fitting solution. For researchers our framework
yields insights into advantages and disadvantages of different approaches and
allows the the creation of benchmark streaming data sets through stored, shared
and repeatable settings for the data feeds. The sources are publicly available and
are released under the GNU GPL license. Although the current focus in MOA
is on classification and clustering, we plan to extend the framework to include
regression, and frequent pattern learning [6].

7 Acknowledgments

This work has been supported by the UMIC Research Centre, RWTH Aachen
University, Germany.

14



13

References

1. M. R. Ackermann, C. Lammersen, M. Märtens, C. Raupach, C. Sohler, and
K. Swierkot. StreamKM++: A clustering algorithm for data streams. In SIAM
ALENEX, 2010.

2. C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering evolving
data streams. In VLDB, pages 81–92, 2003.

3. R. Agrawal, S. P. Ghosh, T. Imielinski, B. R. Iyer, and A. N. Swami. An interval
classifier for database mining applications. In VLDB ’92, pages 560–573, 1992.

4. A. Asuncion and D. Newman. UCI machine learning repository, 2007.
5. F. B. Baker and L. J. Hubert. Measuring the power of hierarchical cluster analysis.

Journal of the American Statistical Association, 70(349):31–38, 1975.
6. A. Bifet. Adaptive Stream Mining: Pattern Learning and Mining from Evolving

Data Streams. IOS Press, 2010.
7. A. Bifet and R. Gavaldà. Learning from time-changing data with adaptive win-
dowing. In SIAM International Conference on Data Mining, 2007.

8. A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. MOA: Massive Online Analysis
http://sourceforge.net/projects/moa-datastream/. Journal of Machine Learning
Research (JMLR), 2010.

9. A. Bifet, G. Holmes, B. Pfahringer, and R. Gavaldà. Improving adaptive bagging
methods for evolving data streams.

10. A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà. New ensemble
methods for evolving data streams. In 15th ACM SIGKDD, 2009.

11. L. Breiman et al. Classification and Regression Trees. Chapman & Hall, New York,
1984.

12. M. Brun, C. Sima, J. Hua, J. Lowey, B. Carroll, E. Suh, and E. R. Dougherty.
Model-based evaluation of clustering validation measures. Pattern Recognition,
40(3):807–824, 2007.

13. F. Cao, M. Ester, W. Qian, and A. Zhou. Density-based clustering over an evolving
data stream with noise. In SDM, 2006.

14. T. Cover and J. Thomas. Elements of Information Theory (2nd Edition). Wiley-
Interscience, 2006.

15. P. Domingos and G. Hulten. Mining high-speed data streams. In Knowledge
Discovery and Data Mining, pages 71–80, 2000.

16. S. Dongen. Performance criteria for graph clustering and markov cluster experi-
ments. Technical report, Amsterdam, The Netherlands, The Netherlands, 2000.

17. J. Dunn. Well separated clusters and optimal fuzzy partitions. Journal of Cyber-
netics, 4:95–104, 1974.

18. D. H. Fisher. Knowledge acquisition via incremental conceptual clustering. Ma-
chine Learning, 2(2):139–172, 1987.

19. E. Folkes and C. Mallows. A method for comparing two hierarchical clusterings.
Journal of the American Statistical Association, 78:553–569, 1983.

20. J. Gama, R. Sebastião, and P. P. Rodrigues. Issues in evaluation of stream learning
algorithms. In 15th ACM SIGKDD, 2009.

21. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten.
The WEKA data mining software: an update. SIGKDD Explorations, 11(1):10–
18, 2009.

22. J. A. Hartigan. Clustering Algorithms. Wiley, New York, 1975.
23. L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2:193–

218, 1985.

15



14

24. L. J. Hubert and J. R. Levin. A general statistical framework for assessing cate-
gorical clustering in free recall. Psychological Bulletin, 83(6):1072–1080, 1976.

25. G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In
KDD’01, pages 97–106, San Francisco, CA, 2001. ACM Press.

26. L. Kaufmann and P. Rousseeuw. Finding Groups in Data: an Introduction to
Cluster Analysis. John Wiley & Sons, 1990.

27. R. Kirkby. Improving Hoeffding Trees. PhD thesis, University of Waikato, Novem-
ber 2007.

28. P. Kranen, I. Assent, C. Baldauf, and T. Seidl. Self-adaptive anytime stream
clustering. In IEEE ICDM, pages 249–258, 2009.

29. M. Meila. Comparing clusterings: an axiomatic view. In ICML, pages 577–584,
2005.

30. G. W. Milligan. An examination of the effect of six types of error perturbation on
fifteen clustering algorithms. Psychometrika, 45(3):325–342, 1980.

31. E. Müller, I. Assent, S. Günnemann, T. Jansen, and T. Seidl. OpenSubspace:
An open source framework for evaluation and exploration of subspace clustering
algorithms in weka. In OSDM in conjunction with PAKDD, pages 2–13, 2009.

32. E. Mller, I. Assent, R. Krieger, T. Jansen, and T. Seidl. Morpheus: Interactive
exploration of subspace clustering. In ACM KDD, pages 1089–1092, 2008.

33. N. Oza and S. Russell. Online bagging and boosting. In Artificial Intelligence and
Statistics 2001, pages 105–112. Morgan Kaufmann, 2001.

34. B. Pfahringer, G. Holmes, and R. Kirkby. New options for hoeffding trees. In
Australian Conference on Artificial Intelligence, pages 90–99, 2007.

35. W. Rand. Objective criteria for the evaluation of clustering methods. Journal of
the American Statistical Association, 66:846–850, 1971.

36. C. Rijsbergen. Information Retrieval (2nd Edition). Butterworths, London, 1979.
37. F. J. Rohlf. Methods for comparing classifications. Annual Review of Ecology and

Systematics, 5:101–113, 1974.
38. A. Rosenberg and J. Hirschberg. V-measure: A conditional entropy-based external

cluster evaluation measure. In EMNLP, pages 410–420, 2007.
39. J. C. Schlimmer and R. H. Granger. Incremental learning from noisy data. Machine

Learning, 1(3):317–354, 1986.
40. M. J. Song and L. Zhang. Comparison of cluster representations from partial

second- to full fourth-order cross moments for data stream clustering. In ICDM,
pages 560–569, 2008.

41. M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, and R. Schult. MONIC: modeling and
monitoring cluster transitions. In ACM KDD, pages 706–711, 2006.

42. W. N. Street and Y. Kim. A streaming ensemble algorithm (SEA) for large-scale
classification. In KDD ’01, pages 377–382, New York, NY, USA, 2001. ACM Press.

43. L. Tu and Y. Chen. Stream data clustering based on grid density and attraction.
ACM Trans. Knowl. Discov. Data, 3(3):1–27, 2009.

44. Y. Zhao and G. Karypis. Empirical and theoretical comparisons of selected crite-
rion functions for document clustering. Machine Learning, 55(3):311–331, 2004.

16

14




