Deductive databases

Motivation: Deductive DB

• Motivation is two-fold:
 – add deductive capabilities to databases; the database contains:
 • facts (intensional relations)
 • rules to generate derived facts (extensional relations)
 Database is knowledge base
 – Extend the querying
 • datalog allows for recursion
Motivation: Deductive DB

- Datalog as engine of deductive databases
 - similarities with Prolog
 - has facts and rules
 - rules define -possibly recursive- views
- Semantics not always clear
 - safety
 - negation
 - recursion

Outline

- Syntax of the Datalog language
- Semantics of a Datalog program
- Relational algebra = safe Datalog with negation and without recursion
- Optimization techniques
- Conclusions
Syntax of Datalog

• Datalog query/program:
 – facts → traditional relational tables
 – rules → define intensional views

• Rules
 – if-then rules
 – can contain recursion
 – can contain negations

• Semantics of program can be ambiguous

Example

father(X,Y) :- person(X,m), parent(X,Y).
grandson(X,Y) :- parent(Y,Z), parent(Z,X), person(X,m).
hbrothers(X,Y) :- person(X,m), person(Y,m),
 parent(Z,X), parent(Z,Y).

<table>
<thead>
<tr>
<th>Name</th>
<th>Sex</th>
<th>Parent</th>
<th>Child</th>
</tr>
</thead>
<tbody>
<tr>
<td>ingrid</td>
<td>f</td>
<td>ingrid</td>
<td>toon</td>
</tr>
<tr>
<td>alex</td>
<td>m</td>
<td>alex</td>
<td>toon</td>
</tr>
<tr>
<td>rita</td>
<td>f</td>
<td>rita</td>
<td>an</td>
</tr>
<tr>
<td>jan</td>
<td>m</td>
<td>jan</td>
<td>an</td>
</tr>
<tr>
<td>toon</td>
<td>m</td>
<td>an</td>
<td>bernd</td>
</tr>
<tr>
<td>an</td>
<td>f</td>
<td>an</td>
<td>mattijs</td>
</tr>
<tr>
<td>bernd</td>
<td>m</td>
<td>toon</td>
<td>bernd</td>
</tr>
<tr>
<td>mattijs</td>
<td>m</td>
<td>toon</td>
<td>mattijs</td>
</tr>
</tbody>
</table>
Syntax of Datalog

• Variables: X, Y
• Constants: m, f, rita, ...
• Positive literal: p(t1,...,tn)
 – p is the name of a relation (EDB or IDB)
 – t1, ..., tn constants or variables
• Negative literal: not p(t1, ..., tn)
• Rule: h :- l1, ..., ln
 – h positive literal, l1, ..., ln literals

Syntax of Datalog

• Rule can be recursive
• Arithmetic operations considered as special predicates
 – A<B : smaller(A,B)
 – A+B=C : plus(A,B,C)
Outline

• Syntax of the Datalog language
• **Semantics of a Datalog program**
 – non-recursive
 – recursive datalog
 – aggregation
• Relational algebra = safe Datalog with negation and without recursion
• Optimization techniques
• Conclusions

Semantics of **Non-Recursive** Datalog Programs

• *Ground instantiation of a rule*
 \(h :- l_1, \ldots, l_n \) : replace every variable in the rule by a constant

Example:

father\((X,Y)\) \(:=\) person\((X,m)\), parent\((X,Y)\)

instantiation:

father\((toon,an)\) \(:=\) persoon\((toon,m)\),
 parent\((toon,an)\).
Semantics of Non-Recursive Datalog Programs

Let I be a set of facts
The body of a rule instantiation R’ is satisfied by I if:
– every positive literal in the body of R’ is in I
– no negative literal in the body of R’ is in I

Example:
persoon(toon,m), parent(toon,an) not satisfied by the facts given before

Semantics of Non-Recursive Datalog Programs

Let I be a set of facts
R is a rule h:-l1, …, ln

\[\text{Infer}(R, I) = \{ h' : \]
– h’:-l1’, …, ln’ ground instantiation of R
– l1’ … ln’ satisfied by I \}

\(R = \{ R_1, \ldots, R_n \} \)
\[\text{Infer}(R, I) = \text{Infer}(R_1, I) \cup \ldots \cup \text{Infer}(R_n, I) \]
Semantics of **Non-Recursive**
Datalog Programs

• A rule \(h : - l_1, \ldots, l_n \) is in layer 1:
 – \(l_1, \ldots, l_n \) only involve extensional predicates

• A rule \(h : - l_1, \ldots, l_n \) is in layer \(i \)
 – for all \(0 < j < i \), it is not in layer \(j \)
 – \(l_1, \ldots, l_n \) only involve predicates that are
 extensional and in the layers \(1, \ldots, i-1 \)

Semantics of **Non-Recursive**
Datalog Programs

• Let \(I_0 \) be the facts in a datalog program
 Let \(R_1 \) be the rules at layer 1

 …

 Let \(R_n \) be the rules at layer \(n \)

• \(I_1 = I_0 \cup \text{Infer}(R_1, I_0) \)
 \(I_2 = I_1 \cup \text{Infer}(R_2, I_1) \)

 …

 \(I_n = I_{n-1} \cup \text{Infer}(R_n, I_{n-1}) \)
Semantics of **Non-Recursive Datalog Programs**

Example:

<table>
<thead>
<tr>
<th>Name</th>
<th>Sex</th>
<th>Father</th>
<th>Grandson</th>
</tr>
</thead>
<tbody>
<tr>
<td>ingrid</td>
<td>f</td>
<td>ingrid</td>
<td>toon</td>
</tr>
<tr>
<td>alex</td>
<td>m</td>
<td>alex</td>
<td>toon</td>
</tr>
<tr>
<td>rita</td>
<td>f</td>
<td>rita</td>
<td>an</td>
</tr>
<tr>
<td>jan</td>
<td>m</td>
<td>jan</td>
<td>an</td>
</tr>
<tr>
<td>toon</td>
<td>m</td>
<td>toon</td>
<td>bernd</td>
</tr>
<tr>
<td>an</td>
<td>f</td>
<td>an</td>
<td>mattijs</td>
</tr>
<tr>
<td>bernd</td>
<td>m</td>
<td>toon</td>
<td>bernd</td>
</tr>
<tr>
<td>mattijs</td>
<td>m</td>
<td>toon</td>
<td>mattijs</td>
</tr>
</tbody>
</table>

- father(X,Y) :- person(X,m), parent(X,Y).
- grandson(X,Y) :- parent(Y,Z), parent(Z,X), person(X,m).
- hbrothers(X,Y) :- person(X,m), person(Y,m), parent(Z,X), parent(Z,Y).

Safety

- A rule can make no sense if variables appear in funny ways

Examples:

- S(x) :- R(y)
- S(x) :- **not** R(x)
- S(x) :- R(y), x<y

In each of these cases the result is infinite even if the relation R is finite
Safety

- Therefore, we will only consider rules that are safe.
- A rule \(h : - l_1, \ldots, l_n \) is safe if:
 - every variable in the head of the rule: also in a non-arithmetic positive literal in body
 - every variable in a negative literal of the body: also in some positive literal of the body

Semantics of Non-Recursive Datalog Programs

- For non-recursive, safe datalog programs semantics is well defined
 - all facts that can be derived from the program
 - smallest « model » consistent with the program (unique!)
- Closed-World Assumption: fact is only « true » if it can be derived from the program
Outline

• Syntax of the Datalog language
• **Semantics of a Datalog program**
 – non-recursive
 – recursive datalog
 – aggregation
• Relational algebra = safe Datalog with negation and without recursion
• Optimization techniques
• Conclusions

Semantics of **Recursive** Datalog Programs

• Semantics of recursive datalog is less clear.

Example:

T(a).
R(X) :- T(X), not S(X).
S(X) :- T(X), not R(X).

What about R(a)? S(a)?
Semantics of **Recursive** Datalog Programs

- Therefore: notion of a *stratified* program
- T **depends on** S if some rule with T in the head contains S or (recursively) some predicate that depends on S, in the body.
- **Stratified program:** If T depends on **not** S, then S cannot depend on T (or **not** T).

Semantics of **Recursive** Datalog Programs

- If a program is stratified, the tables in the program can be partitioned into strata:
 - Stratum 0: All database tables.
 - Stratum I: Tables defined in terms of tables in Stratum I and lower strata.
 - If T depends on **not** S, S is in lower stratum than T.
Semantics of **Recursive** Datalog Programs

• Semantics of a stratified program given by:
 – First, compute the *least fixpoint* of all tables in Stratum 1. (Stratum 0 tables are fixed.)
 – Then, compute the *least fixpoint* of tables in Stratum 2; then the lfp of tables in Stratum 3, and so on, stratum-by-stratum.

Semantics of **Recursive** Datalog Programs

• Fixpoint of a set of rules \(R \), starting with set of facts \(I \):

 \[
 \text{repeat} \\
 \phantom{\text{repeat}} \quad \text{Old}_I := I \\
 \phantom{\text{repeat}} \quad I := I \cup \text{infer}(R,I) \\
 \text{until} \quad I = \text{Old}_I
 \]

• Fixpoint **within** one stratum always terminates
The program:

\[
\begin{align*}
T(a). \\
R(X) &: T(X), \textbf{not} S(X). \\
S(X) &: T(X), \textbf{not} R(X).
\end{align*}
\]

is not stratified;

R depends negatively on S
S depends negatively on R

\[
\begin{align*}
g(a,b). & \quad g(b,c). \quad g(a,d). \\
gerach(X,X) &: g(X,Y). \\
gerach(X,Y) &: g(X,Y). \\
gerach(X,Z) &: \text{reach}(X,Y), \text{reach}(Y,Z). \\
node(X) &: g(X,Y). \\
nnode(Y) &: g(X,Y). \\
unreach(X,Y) &: \text{node}(X), \text{node}(Y), \textbf{not} \text{reach}(X,Y).
\end{align*}
\]
Semantics of Recursive Datalog Programs

Stratum 0: g(a,b). g(b,c). g(a,d).

Stratum 1:
node(a), node(b), node(c), node(d),
reach(a,a), reach(b,b), reach(c,c),
reach(d,d), reach(a,b), reach(b,c), …

Stratum 2:
unreach(b,a), unreach(c,a), …

Outline

• Syntax of the Datalog language
• Semantics of a Datalog program
 – non-recursive
 – recursive datalog
 – aggregation
• Relational algebra = safe Datalog with
 negation and without recursion
• Optimization techniques
• Conclusions
Aggregate Operators

\[
\text{Degree}(X, \text{SUM}(<Y>)) \leftarrow g(X,Y).
\]

• The \(< \ldots >\) notation in the head indicates grouping; the remaining arguments (\(X, \text{in this example}\)) are the GROUP BY fields.
• In order to apply such a rule, must have all of relation \(g\) available.
• Stratification with respect to use of \(< \ldots >\) is similar to negation.

Outline

• Syntax of the Datalog language
• Semantics of a Datalog program
• Relational algebra = Safe Datalog with negation and without recursion
• Optimization techniques
• Conclusions
RA = Non-Recursive Datalog

• Every operator of RA can be simulated by non-recursive datalog
 – Project out attribute account_name from account.

 \[\text{query} (A) :- \text{account} (A, N, B). \]
 – Cartesian product of relations \(r_1 \) and \(r_2 \).

 \[\text{query} (X_1, X_2, ..., X_n, Y_1, Y_2, ..., Y_m) :- r_1 (X_1, X_2, ..., X_n), r_2 (Y_1, Y_2, ..., Y_m). \]
 – Union of relations \(r_1 \) and \(r_2 \).

 \[\text{query} (X_1, X_2, ..., X_n) :- r_1 (X_1, X_2, ..., X_n), \]
 \[\text{query} (X_1, X_2, ..., X_n) :- r_2 (X_1, X_2, ..., X_n), \]
 – Set difference of \(r_1 \) and \(r_2 \).

 \[\text{query} (X_1, X_2, ..., X_n) :- r_1 (X_1, X_2, ..., X_n), \]
 \[\text{not } r_2 (X_1, X_2, ..., X_n) \]

RA = Non-Recursive Datalog

• Every rule can be expressed by one RA expression: expression layer-by-layer
• Recursive datalog with negation is more powerful than relational algebra
 – Transitive closure:

 reach(X,X) :- g(X,Y).
 reach(Y,Y) :- g(X,Y).
 reach(X,Y) :- g(X,Y).
 reach(X,Z) :- reach(X,Y), reach(Y,Z).
Outline

- Syntax of the Datalog language
- Semantics of a Datalog program
- Relational algebra = Datalog with negation and without recursion
- **Optimization techniques**
- Conclusions

Evaluation of Datalog Programs

Running example:

```prolog
root(r). child(r,a). child(r,b). child(a,c).
child(a,d). child(c,e). child(d,f). child(b,h).

sg(X,Y) :- root(X),root(Y).
sg(X,Y) :- child(X,U), sg(U,V),
        child(Y,V).
```

![Datalog tree diagram]
Evaluation of Datalog Programs

• **Repeated inferences:** recursive rules are repeatedly applied in the naïve way; same inferences in several iterations.

• **Unnecessary inferences:** if we just want to find sg of a particular node, say \(e \), computing the fixpoint of the sg program and then selecting tuples with \(e \) in the first column is wasteful, in that we compute many irrelevant facts.

Evaluation of Datalog Programs

Running example:

Query: \(?\ sg(e,X)\)

1. \((r, r)\)
2. \((a,a), (b,b), (a,b), (b,a)\)
3. \((c,c), (c,d), (c,h), (d,c), (d,d), \ldots\)
4. \((e,e), (f,f), (e,f), (f,e)\)
Avoiding Repeated Inferences

- **Semiaive Fixpoint Evaluation**: Avoid repeated inferences: at least one of the body facts generated in the most recent iteration.
 - For each recursive table P, use a table δ_P.
 - Rewrite the program to use the delta tables.

Avoiding Unnecessary Inferences

- Still, in the running example:
 - many unnecessary deductions when query is ? sg(e, X)

- Compare with top-down
 - as in Prolog
 - only facts that are connected to the ultimate goal are being considered
"Magic Sets" Idea

- **Idea**: Define a "filter" table: computes all relevant values, restricts the computation of $\text{sg}(e,X)$.

$$
\text{sg}(X,Y) \ :- \ m(X), \ \text{root}(X), \ \text{root}(Y).
$$

$$
\text{sg}(X,Y) \ :- \ m(X), \ \text{child}(X,U), \ \text{sg}(U,V), \ \text{child}(Y,V).
$$

$$
m(X) \ :- \ m(Y), \ \text{child}(Y,X).
$$

$$
m(e).
$$

Magic Sets

- It is *always* possible to do this in such a way that bottom-up becomes as efficient as top-down!

- Different proposals exist in literature
 - how to introduce the magic filters
Outline

• Syntax of the Datalog language
• Semantics of a Datalog program
• Relational algebra = Datalog with negation and without recursion
• Optimization techniques
• Conclusions

Conclusions

• Datalog adds deductive capabilities to databases
 – extensional relations
 – intensional relations
• Datalog without recursion
 – safety requirement
 – semantics based on layers, minimal model
 – equal in power to relational algebra
Conclusions

• Datalog with recursion
 – semantics not always clear
 – stratified negation: least fixpoints interpretation

• Evaluation of datalog queries:
 – without negation = RA-optimization
 – with recursion:
 • semi-naive recursion
 • magic sets

• Very nice idea, but …
• Deductive databases did not make it as a database paradigm

• Yet, many ideas survived
 – recursion in SQL …
• And others may re-surface in future.