Data Mining
Clustering (2)

Toon Calders

Sheets are based on the those provided by Tan, Steinbach, and Kumar. *Introduction to Data Mining*

Technische Universiteit Eindhoven
University of Technology

Where innovation starts
Outline

• Partitional Clustering
 • Distance-based
 – K-means, K-medoids, Bisecting K-means
 • Density-based
 – DBSCAN

• Hierarchical Clustering

• Cluster validity
Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits
Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by ‘cutting’ the dendogram at the proper level

- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, …)
Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)

- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time
Agglomerative Clustering Algorithm

• More popular hierarchical clustering technique

• Basic algorithm is straightforward
 1. Compute the proximity matrix
 2. Let each data point be a cluster
 3. Repeat
 4. Merge the two closest clusters
 5. Update the proximity matrix
 6. Until only a single cluster remains

• Key operation is the computation of the proximity of two clusters
 • Different approaches to defining the distance between clusters distinguish the different algorithms
Starting Situation

- Start with clusters of individual points and a proximity matrix
After some merging steps, we have some clusters

Proximity Matrix

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Intermediate Situation

- We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.
After Merging

- The question is “How do we update the proximity matrix?”

<table>
<thead>
<tr>
<th></th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>?</td>
</tr>
<tr>
<td>C2 U C5</td>
<td>? ? ? ?</td>
</tr>
<tr>
<td>C3</td>
<td>?</td>
</tr>
<tr>
<td>C4</td>
<td>?</td>
</tr>
</tbody>
</table>

Proximity Matrix
How to Define Inter-Cluster Similarity

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward’s Method uses squared error

<table>
<thead>
<tr>
<th></th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proximity Matrix
How to Define Inter-Cluster Similarity

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward’s Method uses squared error

Proximity Matrix

<table>
<thead>
<tr>
<th></th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TU/e Technische Universiteit Eindhoven University of Technology
How to Define Inter-Cluster Similarity

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward’s Method uses squared error
How to Define Inter-Cluster Similarity

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward’s Method uses squared error

Proximity Matrix
How to Define Inter-Cluster Similarity

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward’s Method uses squared error

Proximity Matrix
Cluster Similarity: MIN or Single Link

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters.
- Determined by one pair of points, i.e., by one link in the proximity graph.

<table>
<thead>
<tr>
<th></th>
<th>I1</th>
<th>I2</th>
<th>I3</th>
<th>I4</th>
<th>I5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>1.00</td>
<td>0.90</td>
<td>0.10</td>
<td>0.65</td>
<td>0.20</td>
</tr>
<tr>
<td>I2</td>
<td>0.90</td>
<td>1.00</td>
<td>0.70</td>
<td>0.60</td>
<td>0.50</td>
</tr>
<tr>
<td>I3</td>
<td>0.10</td>
<td>0.70</td>
<td>1.00</td>
<td>0.40</td>
<td>0.30</td>
</tr>
<tr>
<td>I4</td>
<td>0.65</td>
<td>0.60</td>
<td>0.40</td>
<td>1.00</td>
<td>0.80</td>
</tr>
<tr>
<td>I5</td>
<td>0.20</td>
<td>0.50</td>
<td>0.30</td>
<td>0.80</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Hierarchical Clustering: MIN

Nested Clusters
Strength of MIN

- Can handle non-elliptical shapes
Limitations of MIN

- Sensitive to noise and outliers

Original Points

Two Clusters
Cluster Similarity: MAX or Complete Linkage

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
- Determined by all pairs of points in the two clusters

<table>
<thead>
<tr>
<th></th>
<th>I1</th>
<th>I2</th>
<th>I3</th>
<th>I4</th>
<th>I5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>1.00</td>
<td>0.90</td>
<td>0.10</td>
<td>0.65</td>
<td>0.20</td>
</tr>
<tr>
<td>I2</td>
<td>0.90</td>
<td>1.00</td>
<td>0.70</td>
<td>0.60</td>
<td>0.50</td>
</tr>
<tr>
<td>I3</td>
<td>0.10</td>
<td>0.70</td>
<td>1.00</td>
<td>0.40</td>
<td>0.30</td>
</tr>
<tr>
<td>I4</td>
<td>0.65</td>
<td>0.60</td>
<td>0.40</td>
<td>1.00</td>
<td>0.80</td>
</tr>
<tr>
<td>I5</td>
<td>0.20</td>
<td>0.50</td>
<td>0.30</td>
<td>0.80</td>
<td>1.00</td>
</tr>
</tbody>
</table>

TU/e
Technische Universität Eindhoven
University of Technology
Hierarchical Clustering: MAX

Nested Clusters

Dendrogram
Strength of MAX

- Less susceptible to noise and outliers
Limitations of MAX

- Tends to break large clusters
- Biased towards globular clusters
Cluster Similarity: Group Average

- Proximity of two clusters is the average of pairwise proximity between points in the two clusters.
 \[
 \text{proximity}(\text{Cluster}_i, \text{Cluster}_j) = \frac{\sum_{p_i \in \text{Cluster}_i, p_j \in \text{Cluster}_j} \text{proximity}(p_i, p_j)}{|\text{Cluster}_i| \cdot |\text{Cluster}_j|}
 \]

- Need to use average connectivity for scalability since total proximity favors large clusters

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>0.90</td>
<td>0.10</td>
<td>0.65</td>
</tr>
<tr>
<td>2</td>
<td>0.90</td>
<td>1.00</td>
<td>0.70</td>
<td>0.60</td>
</tr>
<tr>
<td>3</td>
<td>0.10</td>
<td>0.70</td>
<td>1.00</td>
<td>0.40</td>
</tr>
<tr>
<td>4</td>
<td>0.65</td>
<td>0.60</td>
<td>0.40</td>
<td>1.00</td>
</tr>
<tr>
<td>5</td>
<td>0.20</td>
<td>0.50</td>
<td>0.30</td>
<td>0.80</td>
</tr>
</tbody>
</table>
Hierarchical Clustering: Group Average

Nested Clusters

Dendrogram
Hierarchical Clustering: Group Average

- Compromise between Single and Complete Link

- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters
Cluster Similarity: Ward’s Method

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
 - Similar to group average if distance between points is distance squared
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of K-means
 - Can be used to initialize K-means
Hierarchical Clustering: Comparison

MIN

MAX

Ward’s Method

Group Average
Hierarchical Clustering: Time and Space requirements

- **O(N^2)** space since it uses the proximity matrix.
 - N is the number of points.

- **O(N^3)** time in many cases
 - There are N steps and at each step the size, N^2, proximity matrix must be updated and searched
 - Complexity can be reduced to **O(N^2 \log(N))** time for some approaches
Hierarchical Clustering: Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone.

- No objective function is directly minimized.

- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters
Outline

• Partitional Clustering
 • Distance-based
 – K-means, K-medoids, Bisecting K-means
 • Density-based
 – DBSCAN

• Hierarchical Clustering

• Cluster validity
Cluster Validity

- For supervised classification we have a variety of measures to evaluate how good our model is:
 - Accuracy, precision, recall

- For cluster analysis, the analogous question is how to evaluate the “goodness” of the resulting clusters?

- But “clusters are in the eye of the beholder”!

- Then why do we want to evaluate them?
 - To avoid finding patterns in noise
 - To compare clustering algorithms
 - To compare two sets of clusters
 - To compare two clusters
Clusters found in Random Data

Random Points

K-means

DBSCAN

Complete Link
Different Aspects of Cluster Validation

1. Determining the **clustering tendency** of a set of data, i.e., distinguishing whether non-random structure actually exists in the data.

2. Comparing the results of a cluster analysis to externally known results, e.g., to externally given class labels.

3. Evaluating how well the results of a cluster analysis fit the data **without** reference to external information.
 - Use only the data

4. Comparing the results of two different sets of cluster analyses to determine which is better.

5. Determining the ‘correct’ number of clusters.
Measuring Cluster Validity Via Correlation

- Correlation of incidence and proximity matrices for the K-means clusterings of the following two data sets.

\[
\text{Corr} = -0.9235 \quad \text{Corr} = -0.5810
\]
Using Similarity Matrix for Cluster Validation

- Order the similarity matrix with respect to cluster labels and inspect visually.
Using Similarity Matrix for Cluster Validation

- Clusters in random data are not so crisp

DBSCAN
Using Similarity Matrix for Cluster Validation

- Clusters in random data are not so crisp

K-means
Using Similarity Matrix for Cluster Validation

- Clusters in random data are not so crisp

Complete Link
Using Similarity Matrix for Cluster Validation

DBSCAN
Conclusions

- **Partitional algorithms**
 - K-means and its variations
 - Restricted to spherical clusters
 - Number of clusters needs to be set by user
 - DBSCAN
 - Any shape of cluster
 - Works only if density is uniform
 - Two parameters to set …

- **Hierarchical**
 - Merging versus splitting (bisecting K-means)
 - Different criteria to determine distances between clusters
Cluster validity is very hard to check!

Without a good validation, clustering is potentially just random.

“The validation of clustering structures is the most difficult and frustrating part of cluster analysis.

Without a strong effort in this direction, cluster analysis will remain a black art accessible only to those true believers who have experience and great courage.”

Algorithms for Clustering Data, Jain and Dubes