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2. Research Proposal

2a. A description of the proposed research
2a1. Overall aim and key objectives 

Mining for Minorities (M4M) automatically discovers underserved minorities in the data that is currently being 
amassed from controlled experiments. Such experiments are a cornerstone of science. The typical controlled 
experiment, in which we have several variants between which we must choose, ends in selecting the best variant and 
discarding the others. This final step is unnecessarily wasteful. Minorities may be better served by a discarded 
variant; M4M avoids throwing such minorities under the bus. 

The simplest version of a controlled experiment is A/B testing [KohLSH2009, SirK2013, KohL2016], encompassing two 
variants: variant A is currently in use, while variant B is newly developed. Further ingredients of A/B testing are a pool 
of test subjects, and a measurement of success. Each test subject is randomly assigned to either variant A or B, and 
the degree of success is measured. Aggregating the success measurements per variant, we can assess whether 
variant A or B works best. The winning variant is kept, and the losing variant is discarded. 

In the internet era, A/B testing has become extremely popular. Since many companies, website owners, 
pharmaceutical developers, etcetera run A/B tests all the time, much test data is available. Typically, we have more 
data than just the A/B variant and the positive/negative effect: of a website visitor clicking a button on a website, we 
also learn their OS and browser version, country, browser screen height is, etc.; of a patient treated with a medicine, 
we survey all kinds of demographic information. This additional information can potentially be used to identify 
subgroups that are better served by the variant that loses in the overall population. If the general population is 
better served by medication A, but a sizeable minority is better served by medication B, then we owe it to the 
general public to identify these minorities. 

Data varying over time 

Traditional data mining methods assume data in 
Cross-Sectional (CS) form: at one point in time, we 
make a number of independent observations, and this 
is our dataset (see Table 1 for an example). Modern 
controlled experiments often result in data varying 
over time, as illustrated in Figure 1; time proceeds 
along the x-axis, while the y-axis is an unspecified 
measurement. Here, CS represents data such as in 
Table 1: a set of people measured exactly once. Three 
forms of data collection over time can be distinguished. 
In time series, multiple measurements are sampled per case with very short intervals: think of patients wearing blood 
pressure sensors. In longitudinal data, the same occurs with long intervals in a relatively long period of time: think of 
post-operative patients who repeatedly fill out surveys on their own well-being. Repeated Cross-Sectional (RCS) data 
is collected from new samples at each measurement occasion, resulting in varying sample sizes: think of yearly 
survey of cohorts of students of the same age (so across measurements, the age remains the same, but a different 
number of different students are surveyed). To appropriately serve minorities, M4M should make statements about 
group behavior over time; if a group is better served with an alternative variant in a certain period of time, we ought 
to know. 

I propose an Exceptional Model Mining (EMM) generalization that automatically finds coherent subgroups 
displaying exceptional behavior in controlled experiment data, which allows to appropriately serve minorities. To 
do so, in the Mining for Minorities project, I will generalize EMM to data that varies over time. EMM requires 
efficient search strategies: the main scientific challenge of M4M is to provide proofs and derive bounds necessary 
to enable efficient search strategies on time-varying data. 

Figure 1: datasets of various types
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Running example: A/B testing on a toy dataset 
 
Suppose we collected the following data on a patient population, in an A/B test with two medication variants 
for the same disease, with either a positive or a negative effect: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The final decision derives from the cross table gathering all data on the right-hand side of the bold line, as 
illustrated in Table 2. The traditional A/B test concludes the following: variant A has success rate 40%, while 
variant B has success rate 60%. Since variant B performs better, we all use variant B from now on. In a 
traditional A/B test, what is best for the majority will then be prescribed to the entire population. This is 
unnecessarily wasteful, and runs the risk of harming minorities. 
 
 
 
 
 
 
 
 
 
 
In almost all controlled experiments, we have more information than what is available on the right-hand side of 
the bold line in Table 1. We can use such information, for instance the demographics in Table 1, to investigate 
the cross-table for subgroups of the dataset. Tables 3 and 4 are the cross tables for the subgroups 
“Smokes?=no” (covering the rows 01, 02, 04, and 09) and “Region=Nordic” (covering the rows 06, 07, and 08). 
 
Genetic and environmental circumstances influence how people react to medication, which makes it unlikely 
that the full population reacts homogeneously. Table 3 displays an example of a subgroup that is better served 
by medication A, even though the general population is better served by medication B. By contrast, Table 4 
displays an example of a subgroup that is substantially better served by medication B; the effect is stronger than 
in the overall population. 
 

 
 

  
 

Table 1: example A/B test dataset 

ID Age Smokes? Gender Country Region … Variant Effect 
01 22 no M NLD Benelux  A + 
02 46 no F BEL Benelux  B + 
03 24 yes M LUX Benelux  A - 
04 25 no M ESP Mediterranean  B - 
05 29 yes F ITA Mediterranean  A - 
06 45 yes F FIN Nordic  B + 
07 63 yes M SWE Nordic  A - 
08 36 yes M NOR Nordic  B + 
09 23 no F ESP Mediterranean  A + 
10 50 yes F LUX Benelux  B - 

 
  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
EMM [LemFK2008, Dui2013, DuiFK2016] is a data mining framework seeking subgroups in a dataset. Subgroups are 
interesting if they satisfy two constraints. On the one hand, subgroups must be interpretable: we must be able to 
define them as a conjunction of a few conditions on attributes of the dataset. In Table 1, we are not interested in the 
subgroup consisting of rows 01, 02, 04, and 08, but we might be interested in the subgroup defined as smokers 
under the age of 30 (encompassing rows 03 and 05). This ensures that found subgroups are actionable: if we have a 
concise interpretable definition of a subgroup, we can base a policy on it. On the other hand, subgroups must be 
exceptional: they must display some kind of unusual interaction between columns preselected as targets. Behavior 
between the targets “Variant” and “Effect” in Table 1 can be gauged in terms of their association [DuiFK2016, 
DuiFPPWAFP2017] which can be derived from the cross table in Table 2, and subgroups displaying exceptional 
association are illustrated in Tables 3 and 4. 
 

Table 2: cross table for 
entire dataset 

  Effect 
  - + 

Variant 
A 3 2 
B 2 3 

 

Table 3: cross table for 
subgroup "Smokes?=no" 

  Effect 
  - + 

Variant 
A 0 2 
B 1 1 

 

Table 4: cross table for 
subgroup "Region=Nordic" 

  Effect 
  - + 

Variant 
A 1 0 
B 0 2 
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State-of-the-art and open problems: efficient EMM algorithms for CS data 
 
Even on Cross-Sectional data, the EMM search space is vast. Depending on the prevalence of attributes with many 
distinct values and expressiveness of the subgroup definition language, the search space can be exponential in the 
number of both attributes and observations. On top of this expensive generation of candidate subgroups, comes the 
computational cost of evaluating the exceptionality of each subgroup.  
 
There are two approaches to traversing this vast search space. Heuristic search algorithms presume that it makes no 
sense to find the absolutely highest possible exceptionality value in a subgroup if its definition becomes unwieldy: 
who understands a conjunction of 65 conditions? Hence, heuristic search actively restricts exploration to part of the 
search space. Optimality may be lost, but interpretability is guaranteed. Also, heuristic search can cope with a 
mixture of attribute types and any desired kind of exceptionality. Exhaustive search algorithms accept only the 
optimal answer. Some structure must be found allowing to discard parts of the search space while guaranteeing that 
this discarded space contains nothing of interest; hence, we passively restrict exploration to only the relevant part of 
the search space. This can be done, but typically only under a restricted problem definition: numeric attributes are 
disallowed, or a limitation is imposed on the types of exceptional behavior. Within this restricted setting, the 
algorithm guarantees finding the best answer. 
 
The standard heuristic search algorithm is Beam Search [DuiFK2016], a multi-pronged greedy approach: it restricts 
the number of conditions allowed to conjoin, and on each level, it refines a select number w of promising subgroups 
to generate the next-level candidates. Beam search is a baseline that works with any EMM dataset and any chosen 
type of exceptional behavior; if all else fails, we can still find minorities with these algorithms. An alternative is 
Monte-Carlo Tree Search (MCTS) [BosBRK2017, MatNBK2021]. Its applicability depends on the derivation of Upper 
Confidence Bounds in the "Select" phase, which works for the WRAcc quality measure (and hence for a single, binary 
target variable); its generalization to other modes of exceptionality in CS data is an open problem, as is generalization 
beyond CS data. Finally, one can employ Pattern Sampling (PS) methods [BolLPG2011, BolMG2012, MoeB2014, 
GiaS2018]. By shifting sampling weights towards observations that are more likely to contribute to exceptional 
models, CDPS promises to deliver interesting subgroups quickly with high probability. It does so quite successfully for 
generic pattern mining methods, but within EMM appropriate sampling weights have only been derived for two 
kinds of exceptional behavior (model classes) specifically invented for this purpose [MoeB2014]; generalization to 
other model classes on CS data, and generalization beyond CS data, are both open problems. 
 
In exhaustive search, most work focuses on Optimistic Estimates [GroRW2008]: given a kind of exceptional 
interaction, can we define an upper bound on the exceptionality of all refinements of the current candidate 
subgroup? If so, and if this bound does not surpass the quality of the best subgroups already found, we can prune 
the search tree. This can dramatically speed up the algorithm, but for each new type of exceptional target 
interaction, deriving these bounds is an open problem. For EMM, GP-Growth [LemBA2012] defines a condensed 
representation of subgroup exceptionality, stored in a tree. By propagating this information through the tree, 
exceptionality bounds can be derived without traversing the original dataset, improving algorithm efficiency. When 
the bounds do not surpass a certain quality threshold achieved in earlier evaluated subgroups, the search tree can be 
pruned. For each new type of exceptional target interaction, deriving the condensed representation and the bounds 
is an open problem. GP-Growth works only if the condensed representation can be computed with a linear-time 
algorithm with sublinear memory demands, ruling out more complex types of exceptional target interaction 
including Bayesian networks [DuiFK2016]. Alternatively, optimistic estimates can be used in Significant Pattern 
Mining [Web2007], to efficiently find subgroups in EMM concerning voting data [BelDPCL2019]. This enables 
application of EMM on datasets where many values are missing, which is often the case in real-world scenarios. 
 
Recent work delivers the best of both worlds: Refine&Mine [BelBK2018] is an anytime algorithm with guarantees in 
Subgroup Discovery on numeric data. When this algorithm gets infinite time, it provides the optimal subgroup. When 
pressed for time, we can interrupt the algorithm: it provides the best answer found so far, plus a bound on how far 
removed from the optimum this answer can possibly be. This very promising (and ECMLPKDD 2018 Best Data Mining 
Paper Award winning!) work is theoretically wonderful, but the limitation to a single target and to numeric-only data 
disallows its deployment on many real-life datasets: generalization it to datasets with a mixture of attribute types, 
more complex types of exceptional target interaction, and beyond CS data, are all open problems. 
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Why do alternative state-of-the-art methods not suffice? 

If we would have a specific single minority to investigate –for instance: the effect of smoking on the efficacy of 
medications A and B– traditional statistical methods would suffice: a single hypothesis is to be tested, and an old-
fashioned t-test would do the trick. Generally, we do not know beforehand which minorities would be better served 
by an alternative variant. Note that the dataset from Table 1 is a toy example; real-life datasets easily record tens to 
thousands of properties (columns) over a quarter million of observations (rows). We cannot afford to manually 
formulate and test hypotheses on datasets of such dimensions, especially since the number of candidate subgroups 
explodes exponentially with the number of columns: we can define  not only the subgroup “smokes?=no”, but also 
“smokes?=no AND age<30”, “smokes?=no AND age>30”, “smokes?=no AND age<40”, “smokes?=no AND age<40 
AND gender=M”, etcetera. Exploring this exponential search space to find minority subgroups best served by an 
alternative variant can only be done by EMM [DuiFK2016]. 

In a medical setting, the polar opposite to the simplistic final decision as made in an A/B test would be to move to 
personalized medicine [ManCS2000]. Based on an expensive analysis of a single patient’s DNA, one could tailor a 
suggested treatment to the specific patient at hand. This works well for individuals but doesn’t scale to populations.  

In the example of Table 1, traditional A/B testing would conclude: variant B performs better, so everyone will from 
now on get variant B. Personalized medicine would draw the conclusion: “based on the DNA of the person with ID 
01, we recommend that he is prescribed variant A. Based on the DNA of the person with ID 02...”. M4M would draw 
the conclusion: for the overall population, we prescribe variant B (since Yule’s Q [Yul1912] for Table 2 is 0.3846; 
positive values for Q imply B works better). For the exceptional subgroup “Smokes?=no”, however, we prescribe 
variant A (since Yule’s Q for Table 3 is -1). The exceptional subgroup “Region=Nordic” must definitely be prescribed 
variant B, since Yule’s Q for Table 4 is +1; the effect is extra strong in this subgroup. I published a first proof-of-
concept paper that incorporates Yule’s Q for finding exceptional minorities in A/B testing data with a binary reward 
function under the name A&B Testing [DuiFPPWAFP2017].  It only works for binary target columns and CS data; 
generalization over either of these axes is an open problem. 

This last example also illustrates how traditional statistical methods do have a place in this project: there is ample 
potential of synergy between statistics and M4M. When we have fixed a particular kind of target interaction (called 
model class in EMM), and when we are running our search algorithm to explore the exponential search space of 
subgroups, it makes sense to base the quality measure evaluating these subgroups on solid statistics. For instance, 
for the correlation [LemFK2008] and rank correlation [DowD2017] model classes, quality measures exist based on the 
Fisher z transform [NetKNW1996]; for the regression model class [DuiFK2012], parts of the search space can be 
pruned based on bounds on Cook’s distance [Coo1977, CooW1980, CooW1982]; the aforementioned Yule’s Q 
[Yul1912] has been employed for A&B testing [DuiFPPWAFP2017]; the multiple comparisons problem [HocT1987] is 
relevant for any model class, and tackled in the context of significant pattern mining [Web2007] by a permutation 
test [DuiK2011] based on the Central Limit Theorem [Lya1901]. 

2a2. Research plan 

Fundamental Challenges     [Shared by all] 

We will generalize EMM to data that varies over time. We will focus on the three kinds of time-varying data 
illustrated in Figure 1: time series, longitudinal data, and RCS data. Each of these data types comes with its own 
challenges, which means that each of the subsequently described challenges will need to be solved for each time-
varying data type. 

Immediate impact in adjacent scientific fields and society can be had by deploying M4M on data from controlled 
experiments. Therefore, it stands to reason to investigate the design of more modern controlled experiments, 
beyond the simple A/B test of our Running Example. We will develop EMM algorithms for time-varying A/B test data 
with two variants and binary rewards (FC01), with more variants in an A/B/C/D/E test (FC02), with non-binary values 
in the “Effect” column in Table 1 (FC03), incorporating significance when assessing the difference in success between 
variants (A/B/“too close to call”) (FC04), comparing the observed differences with the results of a baseline A/A test 
[Pet2004] (FC05). All these experiments test variants in only a single column of the dataset; combining multiple 
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columns of variants in Multi-Variate Testing (MVT) [Kos1996] allows us to learn interaction effects. We will develop 
EMM algorithms incorporating a conscious choice in which subset of variant combinations should take part in an 
MVT test, through Plackett and Burman designs [PlaB1946] (FC06), fractional factorial designs [DavH1950] (FC07), 
and Latin Hypercube Sampling [Ye1998] (FC08). A sound pick of MVT design allows to estimate single-factor effects 
(which an A/B test can also do) and interaction effects (which an A/B test cannot); we will define an informative way 
to report subgroups, some of which have unusual individual effects, while other feature unusual interaction effects 
(FC09). Finally, we will develop EMM algorithms that can properly analyze Contextual Multi-Armed Bandits (cMAB) 
[LanZ2007] (FC10): cMABs allow to change over time the proportion of visitors assigned to variants, to reduce 
revenue loss due to unsuccessful variants. Care must be taken to not draw premature conclusions. 

All these changes in the A/B testing setup can be combined to generate more interesting versions, and all resulting 
tests require development of new EMM model classes; we will define these new forms of exceptionality, and 
subsequently derive new bounds and formulate new proofs. 

Existing EMM methods typically assume CS data: observations are independent transactions, and the entire dataset 
can be overseen. In modern complex systems these assumptions are not accurate: website visitors perform multiple 
actions in sequence, which influence each other; visitors may never cease interacting with the system, and we never 
know for sure when a visitor has left. This raises fundamental questions. We will redefine what a subgroup can be 
when the data contains dependence between observations (FC11). We will define over what scale of interactions 
what kind of exceptional behavior must occur, for a subgroup to be deemed exceptional (FC12). We will define 
statistically sound quality measures for existing model classes when independence between observations does not 
hold (FC13).  

Challenge 1: heuristic EMM algorithms for time-varying data               [Executed by PhD 1 and PI] 

PhD 1 will focus on heuristic algorithms.  They will generalize beam search to tackle the A/B test expansions of FC 01-
05 (C1a), and the cMABs of FC 10 (C1b). They will derive new Upper Confidence Bounds for MCTS in time-varying 
data (C1c). They will derive appropriate sampling weights for pattern sampling in time-varying data (C1d).  

PhD 1 can be inspired by a recent paper [GiaS2021] that samples unsupervised patterns in streaming data under a 
damping measure of support. Damping measures can inspire our research, but this work needs generalization to 
longitudinal and RCS data, to non-sampling based algorithms, and to data that is supervised (the paper [GiaS2021] 
does not Variants or Effects; it merely counts occurences of subgroups).  

Challenge 2: exhaustive EMM algorithms for time-varying data               [Executed by PhD 2 and PI] 

PhD 2 will focus on exhaustive algorithms. They will expand A&B testing with the MVT expansion of FC 06-09 (C2a). 
They will prove new Optimistic Estimates for branch-and-bound algorithms in time-varying data (C2b). They will 
create condensed representations for the GP-Growth algorithm in time-varying data (C2c). They will define measures 
of significance that allow for significant pattern mining  in time-varying data (C2d).  

PhD 2 can be inspired by recent work on mining periodic patterns [GalCTTC2018], where repetitive cycles are 
extracted from event logs. Cycles live in a timescale hierarchy (weekly on top of daily), which can be represented as a 
graph, enabling finding informative patterns in time-varying data by tricks from graph pattern mining [KurK2001]. 

Challenge 3: anytime EMM algorithms with guarantees for time-varying data  [Executed by PI; contributions by PhDs] 

I will focus on anytime algorithms with guarantees. I will answer the foundational questions of FC 11-13 (C3a). I will 
generalize Refine&Mine [BelBK2018] to datasets with mixed attribute types (C3b), interaction between multiple 
targets (C3c), and time-varying data (C3d). Each generalization requires proofs of bounds on the distance of our 
current solution to the optimum, whenever the algorithm is interrupted. 

Challenge 3 requires an extensive collaboration with the data mining group in Lyon. One of the Refine&Mine paper 
[BelBK2018] authors, A. Belfodil, visited my group at the TU/e, resulting in a joint paper [BelDPCL2019]; a recurring 
pattern of mutual research visits between my group and the group of M. Plantevit is desirable. 
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Timetable 

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 

C1a 
C1b 
C1c 
C1d 
C2a 
C2b 
C2c 
C2d 
C3a 
C3b 
C3c 
C3d 

This Gantt chart displays the challenge distribution across team members over the 20 quartiles in the project. The 
total project duration is five years; labels correspond to the bold text in the Challenge text. Primary responsiblity for 
tasks in red lies with PhD 1, for tasks in green with PhD 2, and for tasks in blue with the PI. Several tasks will need to 
be wrapped up by the PI after the PhDs have graduated: those are displayed in orange. 

The more fundamental challenges C1a, C1b, C2a, and C3a are set up such that all academic personnel hired on this 
project, including the relatively inexperienced PhD students, can hit the ground running: several accessible projects 
await them to be resolved immediately. Having cut our teeth on these initial subtasks, we are to spend more time on 
the riskier subchallenges (C1c, C1d, C2b, C2c, C2d, C3b, and C3c). I expect PhD 1 to intially focus on time series data, 
as inspired by the sampling algorithm on streaming data provided by [GiaS2021]. I expect PhD 2 to initially focus on 
longitudinal data, as inspired by the exhaustive algorithm on event log data provided by [GalCTTC2018]; by 
elimination, I will initially focus on RCS data myself. Finally, combining all new research into an anytime algorithm 
with guarantees for time-varying data (subchallenge C3d) requires substantial efforts of the entire team. 

2a3. Motivation for choice of host institute 

The Data and Artificial Intelligence (DAI) cluster at Technische Universiteit Eindhoven currently encompasses sixteen 
faculty members, half of which in the Data Mining group. These cluster members all bring complementary expertises 
to the table: a wide variety of data mining and AI subfields are covered. This ensures a very fruitful environment for 
academics in all stages of their career (including both faculty members and PhD students) to thrive: on the one hand, 
we can concentrate on our main research focus without being in direct competition with fellow cluster members, on 
the other hand, if our research comes into contact with a neighboring data mining subfield, we can make good use of 
the expertise of other members of our cluster. For instance, if we would deploy M4M on patient data, and we have 
knowledge of the social network between the patients, it might strengthen M4M to incorporate techniques from 
Graph Mining; an expert on the topic of Graph Mining happens to occupy the office next to the PI (cf. Challenge 2, 
last sentence, for an example of the usefulness of such synergies). Similarly, experts on Natural Language Processing, 
Deep Learning, Matrix Factorization, Metalearning, Decision Support Systems, and so on and so forth are all sharing 
the same hallway as the to-be-hired PhDs, to share their expertise if necessary. 

Beyond the cluster, TU/e has recently invested heavily in EAISI, the Eindhoven Artificial Intelligence Systems Institute. 
EAISI offers a platform to interact with TU/e researchers who are interested in Artificial Intelligence but stationed 
outside of the DAI cluster, with representatives from industry, and with student teams. 
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2b. Scientific and/or societal impact of the proposed project (Knowledge utilisation) 
Specify which kind of impact the proposal focusses on: 

Scientific and societal impact are of comparable focus 

Please elaborate on the scientific and/or societal impact of the proposed project: 

The Exceptional Model Mining generalization to be developed in M4M will be presented in open-access academic 
papers at top-ranked conferences and journals in the field. As a consequence, the fruits of M4M will be available for 
use to all kinds of stakeholders. Controlled experiments range far beyond computer science. Analyzing student 
success can make M4M applicable to education [WilLKWMPCH2014]. Medical trials often involve what essentially 
amounts to an A/B test [JasJ2012]: does medicine variant A or B cure more people, or have fewer side effects, or lead 
to a better quality of life? These tests are instrumental in determining whether health insurers will cover certain 
forms of medication, but that is a very blunt one-size-fits-all instrument for such an important domain! The margin of 
victory is of paramount importance here: if 55% of the population is better served with medicine A, the standard A/B 
test would dictate that we prescribe medicine A to everyone and shred medicine B. Thereby, 45% of the population 
suffers. Identifying subgroups for whom the outcome of controlled experiments is exceptional, has the potential to 
improve the outcome for a substantial number of patients: it moves from one-size-fits-all medicine towards 
personalized medicine, landing somewhere which might be best described as automatically stratified medicine: 
basing the medication on the subgroup(s) to which the patient belongs. 

Initial rollout of M4M beyond the university grounds is planned in collaboration with two specific partners: [details 
scrambled to protect their anonymity].
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2e. Data management section 
1. Will data be collected or generated that are suitable for reuse?

 Yes: Then answer questions 2 to 4.

2. Where will the data be stored during the research?
All digital data will be stored on departmental servers, which are backed-up automatically and daily. Some
data may also be stored on departmentally-owned computers, which are also backed-up daily.

3. After the project has been completed, how will the data be stored for the long-term and made available
for the use by third parties? To whom will the data be accessible? 

Relevant final/milestone research data can be made available to members of the research community or 
others as long as the data is not subject to confidentiality restrictions, patenting or any other forms of 
commercial exploitation. For long-term preservation of (processed) data and data dissemination we 
typically use a combination of in-house storage/archiving with controlled access on secure network drives 
available at the department (minimum 10years), discipline-specific data repositories and 
multidisciplinary/generic repositories, such as the Dutch data repository for technical scientific data, 
4TU.Centre for Research Data. Research data generated on datasets belonging to potential external project 
partners may not be made available for reasons of confidentiality; in such cases, anonymized versions of the 
research data will be made available instead. Expertise on preserving privacy while mining data is available 
in the TU/e data mining group. 

4. Which facilities (ICT, (secure) archive, refrigerators or legal expertise) do you expect will be needed for
the storage of data during the research and after the research? Are these available? 

ICT facilities for storage and access to data are available at our department for this project. Long-term 
storage and/or archiving may require a combination of in-house facilities and external data repositories, as 
described above. 
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