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Abstract. Label Ranking problems are receiving increasing attention
in machine learning. The goal is to predict not just a single value from
a finite set of labels, but rather the permutation of that set that applies
to a new example (e.g., the ranking of a set of financial analysts in
terms of the quality of their recommendations). In this paper, we adapt
a multilayer perceptron algorithm for label ranking. We focus on the
adaptation of the Back-Propagation (BP) mechanism. Six approaches
are proposed to estimate the error signal that is propagated by BP. The
methods are discussed and empirically evaluated on a set of benchmark
problems.
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1 Introduction

In many real-world applications, assigning a single label to an example is not
enough. For instance, when trading in the stock market based on recommenda-
tions from financial analysts, predicting who is the best analyst does not suffice
because 1) he/she may not make a recommendation in the near future and 2)
we may prefer to take into account recommendations of multiple analysts, to be
on the safe side [1]. Hence, to support this approach, a model should predict a
ranking of analysts rather than suggesting a single one. Such a situation can be
modeled as a Label Ranking (LR) problem: a form of preference learning, aiming
to predict a mapping from examples to rankings of a finite set of labels [2].

Recently, quite some solutions have been proposed for the label ranking prob-
lem [2], including one based on the Multilayer Perceptron algorithm (MLP) [4].
MLP is a type of neural network architecture, which has been applied in a super-
vised learning context using the error back-propagation (BP) learning algorithm.
In this paper, we try a different approach to the simple adaptation proposed ear-
lier [4]. We adapt the BP learning mechanism to LR. More specifically, we inves-
tigate how the error signal explored by BP can use information from the LR loss
function. We introduce six approaches and evaluate their (relative) performance.
We also show some preliminary experimental results that indicate whether our
new method could compete with state-of-the-art LR methods.
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The remainder of this paper is organized as follows. Section 2 formalizes the
LR problem and recalls the BP algorithm for neural networks. In Section 3 we
introduce our new adaptation of a multilayer perceptron to solve the LR problem,
and the approaches created to estimate the error signal. The experimental results
are presented in Section 4, and Section 5 concludes this paper.

2 Preliminaries

Throughout this paper, we assume a training set T = {〈xn, πn〉} consisting
of t examples xn and their associated label rankings πn. Such a ranking is a
permutation of a finite set of labels L = {λ1, . . . , λk}, given k , taken from
the permutation space ΩL. Each example xn consists of m attributes xn =
{a1, . . . , am} and is taken from the example space X . The position of λa in a
ranking πn is denoted by πn(a) and assumes a value in the set {1, . . . , k}.

2.1 Label Ranking

Given T = {〈xn, πn〉}, the goal in LR is to learn a function f : X → ΩL that min-
imizes a given loss function function l = 1

t

∑t
n=1 τ(πn, π̂n). With this mapping,

we are able to predict a ranking π̂n of the labels in L for a new example xn. Loss
functions in LR are typically based on measures of rank correlation, that assess
the similarity between two rankings. One such measure is Kendall’s τ coefficient,
denoted τ(π̂n, πn). The LR error is defined as eτ (n) on the nth training example
by eτ (n) = 1/2 − 1/2 · τ(π̂n, πn). The LR error always lies between 0 and 1, where
eτ (n) = 0 means that the network returns a prediction equal to πn and eτ (n) = 1
means that the labels in π̂n are sorted in the reverse order of πn.

There are different approaches to solve LR problems. In reduction techniques,
the method is to learn a utility function for each label using the constraint
classification technique [5] or a log-linear model [6]. Ranking by pairwise com-
parisons [2,7] is a well-known method to model rankings as pairwise binary pref-
erences [5]. In probabilistic discriminative methods, the purpose is to estimate a
distribution for the probability of a ranking given an example [2, 8, 9]. Another
approach is adapting a machine learning algorithm based on similarity between
rankings. In [10], an adaptation of association rules was created where the goal
is to discover frequent pairs of attributes associated with a ranking. In [1], an
adaptation of a naive Bayes model is proposed where probabilities are replaced
by the concept of distance between rankings. In [4], different architectures of
an MLP are used to obtain a ranking prediction. In this paper, we propose an
adaptation of an MLP for LR problems based on similarity measures.

2.2 Neural Networks and Back-Propagation

An MLP is a particular form of a Neural Network (NN), a computational model
often used to solve learning problems [11]. It consists of a weighted directed
graph of an interconnected set of neurons organized in separate layers: the input
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layer, the hidden layer(s) and the output layer. Each layer has one or more
neurons. Every neuron i is connected to the j neurons of the next layer by a set
of weighted links denoted by w1i, . . . , wji. At the input layer, {a1, a2, . . . , am}
represent m input signals associated with the m attributes. At the hidden and
output layers, each neuron j receives the input signals as a linear combination of
the output given by: vj =

∑m
i=0 wjiai. The linear combinations are transformed

into output signals using an activation function ϕ(vj). These signals are sent in
a forward direction layer by layer to the output layer which delivers an output
yj for each output neuron j. In classification, each class is associated with an
output neuron and the prediction is typically given by the one with the highest
activation level.

The goal is to define the values for the connections weights that return the
outputs which lowest error, i.e., the output is most similar to the desired value,
d(n). One method to learn the weights is BP, which propagates errors in a
backward direction from the output layer to the input layer, updating the weight
connections if an error is detected at the output layer. A weight correction on the
nth training example is defined in terms of the error signals cj(n) for each output
neuron j. Considering a sequential mode in which the weights are updated after
every training example, the predicted output yj(n) is compared with the desired
target dj(n), and the individual error ej(n) is estimated as follows: ej(n) =
dj(n)− yj(n). In a typical NN, the error signal is equal to the individual error,
because the predicted output is directly compared with the target. The correction
is given by Δwji(n) = ηδj(n)yi(n), where η is the learning rate, yi(n) is the
output signal of the previous neuron i and the local gradient δj is defined by
δj = ej(n)ϕ

′(vj(n)). For a hidden neuron i, the local gradient is defined in a
recursive form by δi(n) = ϕ′

i(vi(n))
∑

j δj(n)wji(n).
To prevent the MLP learning from getting stuck in a local optimum we use

random-restart hill climbing, by generating new random weights wji ∼ N (0, 1).
For each restart we present every example in the training set to the learning
process a user-defined number of times, called an epoch. The weights associated
with the best performance are returned.

3 Multilayer Perceptron for Label Ranking

Our adaptation of MLP for LR essentially consists of 1) the method to generate a
ranking from the output layer and 2) the error functions guiding the BP learning
process. The output layer contains k neurons (one for each label). The output
yj of a neuron j at the output layer does not represent a target value or class
but rather the score associated with a label λj . By ordering all the scores, the
predicted ranks π̂n(j) of the label λj and, thus, the predicted ranking.

The tricky point of adapting an MLP for LR is the weight corrections in
the BP process: minimizing the individual errors does not necessarily lead to
minimizing the LR loss. We propose six approaches to define the error signal
cj at the output layer. The weight connection wji(n) is updated based on the
estimated cj(n) using the delta rule Δwji(n) = ηcj(n)yi(n).
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Local Approach (LA). The error signal is the individual error of each output
neuron, cj(n) = ej(n) = πn(j) − π̂n(j), as in the original MLP. The LR error,
eτ , is only used to evaluate the activation of the BP.

Global Approach (GA). The error signal is defined in terms of the LR error. In
this case, it is simply given by cj(n) = eτ (n).

Combined Approach (CA). CA is a combination between GA and LA, cj(n) =
ej(n)eτ (n). We note that a neuron which returns the correct position πn(j) =
ˆπn(j) (i.e., ej(n) = 0) is not penalized even if eτ > 0.

Weight-Based Signed Global Approach (WSGA). The error signal is defined in
terms of the LR error and the incoming weight connections of the output layer.
We assume that a high LR error means that some weights of neurons are too
high and other are too low. The output neurons are ranked according to their
average weights w̄j =

1
q

∑q
i=0 wji, resulting in a position pw(j) ∈ [1, . . . , k]. The

error of the neurons with a position above the mean is negative and it is positive
otherwise:

cj(n) =

⎧
⎪⎨

⎪⎩

−eτ (n), if pw(j) >
(
k
2 + 0.5

)
,

eτ (n), if pw(j) <
(
k
2 + 0.5

)
,

0, if pw(j) =
(
k
2 + 0.5

)
.

(1)

Score-Based Signed Global Approach (SSGA). The motivation for SSGA is the
same as for WSGA. The difference is that we rank the output neuron scores yj
instead of the input weights. The positions of the weights, pw(j) is replaced in
eq. 1 with the positions of the scores, ps(j).

Individual Weight-Based Signed Global Approach (IWSGA). This assumes that
all the weight connections at the output layer are important to define the error
signal and are considered independently of the neurons they connect to. The error
signal denoted cji(n) is associated with the weight of the connection between
output neuron i and hidden neuron j. This is similar to WSGA but we rank all
weight connections individually, rather than the average weights for each output
neuron. The weight corrections are given by Δwji(n) = ηcji(n)yi(n), where:

cji(n) =

{
−eτ(n), if pgw(ji) >

qk
2 ,

eτ (n), if pgw(ji) ≤ qk
2 .

4 Experimental Results

The goal is to compare the performance of the proposed approaches on dif-
ferent datasets. The datasets used for the evaluation are from the KEBI Data
Repository [12] hosted by the Philipps University of Marburg. These datasets,
which are commonly used for LR, are presented in Table 1. Our approach starts
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Table 1. Datasets for LR

Dataset Type k m Instances Dataset Type k m Instances

Authorship A 4 70 841 Iris A 3 4 150
Bodyfat B 7 7 252 Pendigits A 10 16 10992
Calhousing B 4 4 20640 Segment A 7 18 2310
Cpu-small B 5 6 8192 Stock B 5 5 950
Elevators B 9 9 16599 Vehicle A 4 18 846
Fried B 5 9 40768 Vowel A 11 10 528
Glass A 6 9 214 Wine A 3 13 178
Housing B 6 6 506 Wisconsin B 16 16 194

Table 2. Experimental results of MLP-LR and their ranks

Dataset GA LA CA WSGA SSGA IWSGA

τ rji τ rji τ rji τ rji τ rji τ rji
Authorship 0.291 6 0.889 1 0.829 2 0.307 5 0.528 4 0.548 3
Bodyfat -0.004 5 0.056 2 0.075 1 0.033 3 0.022 4 -0.006 6
Calhousing 0.054 6 0.083 3 0.106 2 0.078 4 0.130 1 0.076 5
Cpu-small 0.109 6 0.295 2 0.357 1 0.176 5 0.293 3 0.181 4
Elevators 0.110 6 0.687 1 0.684 2 0.135 5 0.419 3 0.168 4
Fried -0.002 6 0.532 2 0.660 1 0.157 4 0.446 3 0.133 5
Glass 0.317 5 0.818 1 0.757 2 0.258 6 0.475 4 0.493 3
Housing 0.077 6 0.531 2 0.574 1 0.290 3 0.241 4 0.094 5
Iris 0.178 6 0.911 1 0.800 2 0.609 4 0.693 3 0.351 5
Pendigits 0.161 5 0.694 2 0.752 1 0.122 6 0.314 3 0.257 4
Segment 0.177 6 0.799 2 0.842 1 0.341 4 0.338 5 0.346 3
Stock 0.032 6 0.732 2 0.745 1 0.303 4 0.403 3 0.197 5
Vehicle 0.106 6 0.801 1 0.800 2 0.482 4 0.504 3 0.339 5
Vowel 0.065 6 0.474 2 0.545 1 0.098 5 0.130 3 0.125 4
Wine 0.324 6 0.931 1 0.874 2 0.503 4 0.598 3 0.341 5
Wisconsin 0.007 6 0.221 2 0.235 1 0.066 3 0.060 4 0.028 5

Rj 5.8125 1.6875 1.4375 4.3125 3.3125 4.4375

by normalizing all attributes, and separating the dataset into a training and
a test set. On each dataset we tested the six approaches with h = 3 hidden
neurons, η = 0.2, using 5 epochs with 5 random restarts. The error estimation
methodology is 10-fold cross-validation. The results are presented in terms of the
similarity between the rankings πi and π̂i with the Kendall τ coefficient, which
is equivalent to the error measure described in Section 2.

In Table 2, we show the resulting τ -values for each approach, and associated
rank (lower is better) per dataset. The bottom row shows the average rank for
each approach, which allows us to compare the relative performance of the ap-
proaches using the Friedman test with post-hoc Nemenyi test [13]. The Friedman
test proves that the average ranks are significantly unequal (with α = 1%). Then
the Nemenyi test gives us a critical difference of CD = 2.225 (with α = 1%).



30 G. Ribeiro et al.

(a) Boxplot of the results according
to the approaches

(b) Results per number of epochs on
Iris dataset

Fig. 1. Results of Kendall’s τ correlation coefficient

The test implies that for each pair of approaches Ai and Aj , if Ri < Rj − CD,
then Ai is significantly better than Aj . Hence we can see from the table that
approaches LA and CA significantly outperform all other approaches except for
SSGA. However, at α = 10% the critical difference becomes CD = 1.712, so at
this significance level CA significantly outperforms SSGA too.

As we can see from Table 2, not all approaches have a very high τ -value
for all datasets. Notice, however, that these experiments are performed with
a rather arbitrary set of parameters. Varying parameters such as the number
of hidden neurons in the MLP, the number of epochs used when learning the
neural network, and the number of random restarts, could benefit performance.
To illustrate this, Figure 1b displays the variation of τ -values for the different
approaches on the Iris dataset, when varying the number of epochs. As we
can see, we can subtantially improve the results when tweaking the number of
epochs. For some approaches using more epochs is better, but for others this
monotonicity does not hold. We see similar behavior when varying the number
of stages and hidden neurons. Hence, we expect that much better results can be
gained with the new approaches when the parameter space is properly explored
for each dataset, but this is beyond the scope of this paper.

In Table 3, we compare the performance of approaches LA and CA with pub-
lished results of the state-of-the-art algorithms equal width apriori label ranking
(EW), minimum entropy apriori label ranking (ME) [10], constraint classifica-
tion (CC), instance-based label ranking (IBLR) and ranking trees (LRT) [8, 10],
in terms of Kendall’s τ coefficient. Notice that the new methods do not gener-
ally outperform the current state-of-the-art methods, but they do achieve results
that are often of the same magnitude. Since the results for the new approaches
are obtained without any form of parameter optimization, we feel confident that
exploration of the parameter space can yield a competitive algorithm.
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Table 3. Comparison of MLP-LR with other methods

Dataset MLP-LR APRIORI-LR

CA rji LA rji EW rji ME rji CC rji IBLR rji LRT rji
Authorship 0.829 5 0.889 3 NA NA 0.608 6 0.920 2 0.936 1 0.882 4
Bodyfat 0.074 5 0.056 7 0.161 3 0.059 6 0.281 1 0.248 2 0.117 4
Calhousing 0.106 6 0.083 7 0.139 5 0.291 3 0.250 4 0.351 1 0.324 2
Cpu-small 0.357 5 0.295 6 0.279 7 0.439 4 0.475 2 0.506 1 0.447 3
Elevators 0.684 5 0.687 4 0.623 7 0.643 6 0.768 1 0.733 3 0.760 2
Fried 0.660 6 0.532 7 0.676 5 0.774 4 0.999 1 0.935 2 0.890 3
Glass 0.757 7 0.818 5 0.794 6 0.871 2 0.846 4 0.865 3 0.883 1
Housing 0.574 6 0.531 7 0.577 5 0.758 2 0.660 4 0.745 3 0.797 1
Iris 0.800 7 0.911 4 0.883 5 0.960 2 0.836 6 0.966 1 0.947 3
Pendigits 0.752 4 0.694 5 0.684 6 NA NA 0.903 3 0.944 1 0.935 2
Segment 0.842 4 0.799 6 0.496 7 0.829 5 0.914 3 0.959 1 0.949 2
Stock 0.745 5 0.732 7 0.836 4 0.890 3 0.737 6 0.927 1 0.895 2
Vehicle 0.800 5 0.801 4 0.675 7 0.774 6 0.855 2 0.862 1 0.827 3
Vowel 0.545 6 0.474 7 0.709 3 0.680 4 0.623 5 0.900 1 0.794 2
Wine 0.874 6 0.931 3 0.910 4 0.844 7 0.933 2 0.949 1 0.882 5
Wisconsin 0.235 5 0.221 6 0.280 4 0.031 7 0.629 1 0.506 2 0.343 3

To learn more about our results, we crafted a metalearning dataset from Ta-
bles 1 and 3. We performed a Subgroup Discovery [14,15] run using the dataset
characteristics from Table 1 as search space, and mined for local patterns wherein
the rank of LA or CA deviates from the average over all datasets. Such a run re-
sults in a set of conditions on dataset characteristics, under which our approaches
perform unusually good or bad, giving pointers for further research.

The most convincing metasubgroup under which both LA and CA perform
well, is defined by m ≥ 13. Datasets belonging to this subgroup are indicated
by bold blue names in Table 3. When the dataset at hand has relatively many
attributes, our approaches have relatively many input signals in the MLP. Hence
there are many more connections with the hidden layer, and much more interac-
tions between the neurons in the network. Apparently, this increased complexity
of the MLP adds subtlety to its predictions, which allows the MLP-LR method
to induce more accurate representations of the underlying concepts.

5 Conclusions

Empirical results indicate that the two methods that directly incorporate the
individual errors perform significantly better than the methods that focus on the
LR error. However, the best results are obtained by combining both errors (CA).
A comparison with results published for other methods additionally indicates
that our method has the potential to compete with other methods. This holds
even though no parameter tuning was carried out, which is known to be essential
for learning accurate networks. Our method becomes more competitive when the
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data contains more attributes; this increases the amount of input neurons, and
the MLP-LR predictions benefit from the more complex network. As future
work, apart from parameter tuning we will investigate other ways of combining
the local and global errors and we will investigate how to give more importance
to higher ranks.
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