More on Classical Petri Nets

prof.dr.ir. Wil van der Aalst
www.vdaalst.com
Petri nets

Math. foundation

Graphical notation

Compactness

Concurrency, locality

Analysis techniques

Tool support
A Petri net system \((P, T, F, m_0)\) consists of a Petri net \((P, T, F)\) and a distinguished marking \(m_0\), the initial marking.

\[
P = \{r1,r2,g1,g2,o1,o2,x,y\} \\
T = \{rg1,rg2,go1,go2,or1,or2\} \\
F = \{(r1,rg1),(y,rg1),(rg1,g1), (g1,go1),(go1,o1), \ldots\} \\
m_0(x) = 1 \\
m_0(r1) = 1 \\
m_0(g1) = 0 \\
\ldots
\]
Transition firing (2)

For a Petri net \((P, T, F)\), let \(w\) be the weight function and let \(m: P \to \mathbb{N}\) be the current marking.

A transition \(t \in T\) can fire if it is enabled at \(m\).

The firing of \(t\) yields a new marking \(m': P \to \mathbb{N}\) where for all places \(p \in P\),

\[
m'(p) = m(p) - w((p, t)) + w((t, p)).
\]

\(t\)
\(p_1\)
\(p_2\)
\(p_3\)

\[
\begin{align*}
m'(p_1) &= 1 - 1 + 0 = 0 \\
m'(p_2) &= 2 - 1 + 0 = 1 \\
m'(p_3) &= 0 - 0 + 1 = 1
\end{align*}
\]
Mapping Petri nets onto transition systems
A Petri net system \((P, T, F, m_0)\) defines the following transition system \((S, TR, s_0)\):

Intuition

\[
s_0 = m_0
\]

\[
s = m: P \rightarrow N
\]
A Petri net system \((P, T, F, m_0)\) defines the following transition system \((S, TR, s_0)\):

- \(S = M = P \rightarrow N\)
- \(TR = \{ (m, m') \in S \times S \mid \exists t \in T : (\forall p \in \bullet t : m(p) > 0) \land (\forall p \in P : m'(p) = m(p) - w((p, t)) + w((t, p))) \}\)
- \(s_0 = m_0\)
Reachability graph

Recall mapping of a Petri net onto a transition system

$s = m: P \rightarrow N$

Reachability graph is the reachable portion of the transition system (reachable from initial marking)
Reachability graph algorithm

1) Label the initial marking \(m_0 \) as the \textit{root} and tag it "new".

2) While "new" markings exists, do the following:
 a) Select a new marking \(m \).
 b) If no transitions are enabled at \(m \), tag \(m \) "dead-end".
 c) While there exist enabled transitions at \(m \), do the following for each enabled transition \(t \) at \(m \):
 i. Obtain the marking \(m' \) that results from firing \(t \) at \(m \).
 ii. If \(m' \) does not appear in the graph add \(m' \) and tag it "new".
 iii. Draw an arc with label \(t \) from \(m \) to \(m' \) (if not already present).

3) Output the graph
Step 1: Label the initial marking m_0 as the root and tag it "new" (indicated by green color).
Example (continued)
Each state is represented as a multiset.

Alternatively, as a vector:
\((1,0,0,1,1,0,0)\) assuming the ordering \((r1,g1,o1,x,r2,g2,o2)\).
Example

```
Example

[2·wait, free] [wait, busy] [wait, free, done] [free, 2·done]
```

![Diagram of states with transitions](image)

- Start
- Stop
- Busy
- Free
- Done

Transitions:
- Start → [2·wait, free]
- Start → [wait, busy]
- Stop → [wait, free, done]
- Stop → [busy, done]
- Stop → [free, 2·done]
Reachability, run

Marking m reachable if there exists a path from m_0 to m.

Path from m_0 to m is a run (can be finite or infinite).

Terminal state (deadlock)
Reachability graph and analysis

- Inspecting the reachability graph of a Petri net is one kind of analysis.
- Petri net can have a huge number of reachable markings (state explosion).
- Even an infinite number, see unbounded place p2.
- We will investigate this later in this course.
Using CPN Tools
first steps ...
Modeling Petri nets with CPN Tools
How to get started with CPN Tools?

Videos
Examples

- Getting Started
- Graphical User Interface
 - Graphical User Interface
 - Palette tools
 - Marking menus
- Tasks in CPN Tools
 - Editing a CPN
Example

- A small bank has 3 employees to serve customers.
- An employee can only serve 1 customer at the same time and only one service can be provided (e.g., deposit money).
- Due to space limitations, only 20 customers can be in the bank at the same time.
- After being served a customer can decide to queue again for another service (e.g., after depositing money, the customer wants to change euros into dollars).
- Model as a classical Petri net using CPN Tools.
- How many states does the corresponding transition system have?
Solution

\[
\frac{22!}{20!(2!)} + \frac{21!}{19!(2!)} + \frac{20!}{18!(2!)} + \frac{19!}{17!(2!)} = 802
\]
Example Revisited

• Model a circular railway system with four stations (st1, st2, st3, and st4) and one train.
• At each station passengers may "hop on" or "hop off". This is impossible if the train is moving.
• The train has a capacity of 50 persons; if the train is full, no new passengers may hop on.
• Model the above process in terms of a Petri net.
• What is the number of reachable states?
• Hints:
 − How to describe the state of the train in terms of it location (e.g., moving from st1 to st2) and number of passengers (e.g., 36)?
 − What are possible actions?
 − When are they possible?
Earlier solution

51 x 4 = 204 states
in CPN Tools
Alternative solution
Remember ...

- Most industrial tools have a token-based semantics, for example

- Even if notations look different (BPMN, EPCs, UML ADs, etc.), the basic mechanisms are similar to the first process modeling notation taking concurrency as a starting point (i.e., Petri nets).
Exercise

<table>
<thead>
<tr>
<th>week</th>
<th>date</th>
<th>Type</th>
<th>topic</th>
<th>to prepare</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>22-4-2013</td>
<td>Lect.</td>
<td>Introduction, transition systems, Petri nets (1)</td>
<td>Read Chapters 1-3 of book. Make all exercises in Section 1 and part of the exercises in Section 2.</td>
</tr>
<tr>
<td></td>
<td>25-4-2013</td>
<td>Lect.</td>
<td>Petri nets (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26-4-2013</td>
<td>Inst.</td>
<td>Transition systems, Petri nets</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>29-4-2013</td>
<td>Lect.</td>
<td>TU/e closed</td>
<td>Read Chapter 4 of book. Make all exercises in Section 2.</td>
</tr>
<tr>
<td></td>
<td>2-5-2013</td>
<td>Lect.</td>
<td>Modeling with Petri nets (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-5-2013</td>
<td>Inst.</td>
<td>Modeling with Petri nets</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>6-5-2013</td>
<td>Lect.</td>
<td>Extending Petri nets with channels</td>
<td>Read Chapter 5 of book.</td>
</tr>
</tbody>
</table>
After this lecture you should be able to

• Understand how to map a Petri net onto a transition system.
• Construct the corresponding reachability graph for a given Petri net.
• Model a classical Petri net using CPN Tools.