Business Process Intelligence Course

〈 Lecture 5 〉

Conformance Checking

prof.dr.ir. Wil van der Aalst
www.processmining.org
Overview

Part I: Preliminaries

- **Chapter 2:** Process Modeling and Analysis
- **Chapter 3:** Data Mining

Part II: From Event Logs to Process Models

- **Chapter 4:** Getting the Data
- **Chapter 5:** Process Discovery: An Introduction
- **Chapter 6:** Advanced Process Discovery Techniques

Part III: Beyond Process Discovery

- **Chapter 7:** Conformance Checking
- **Chapter 8:** Mining Additional Perspectives
- **Chapter 9:** Operational Support

Part IV: Putting Process Mining to Work

- **Chapter 10:** Tool Support
- **Chapter 11:** Analyzing “Lasagna Processes”
- **Chapter 12:** Analyzing “Spaghetti Processes”

Part V: Reflection

- **Chapter 13:** Cartography and Navigation
- **Chapter 14:** Epilogue
Conformance checking

“world”
- business
- processes
- people
- machines
- components
- organizations

models analyzes

software system
- records events, e.g., messages, transactions, etc.
- specifies configures implements analyzes

conformance
- discovery
- enhancement

(event) model

supports/controls

pects/models

(backend)
Language identification in the limit (Mark Gold 1967)

Relation to process mining

sentence \cong trace in event log
language \cong process model
So conformance checking is like spell checking ...

- An activity that should not happen happened
- An activity was executed by the wrong person
- An activity was executed too late
- An activity that should happen did not happen
- Two activities were swapped
need for conformance checking
Using conformance checking

- Local diagnostics
- Global conformance measures
- Local diagnostics

Event log

Process model
Context

- Corporate governance, risk, compliance, and legislation such as the Sarbanes-Oxley (US), Basel II/III (EU), J-SOX (Japan), C-SOX (Canada), 8th EU Directive (EURO-SOX), BilMoG (Germany), MiFID (EU), Law 262/05 (Italy), Code Lippens (Belgium), and Code Tabaksblat (Netherlands).

- ISO 9001:2008 requires organizations to model their operational processes.

- Business alignment: make sure that the information systems and the real business processes are well aligned.
Auditing

- Audits are performed to ascertain the validity and reliability of information about these organizations and associated processes.
- This is done to check whether business processes are executed within certain boundaries set by managers, governments, and other stakeholders.
- Obviously, process mining can help to detect fraud, malpractice, risks, and inefficiencies.
- All events in a business process can be evaluated and this can also be done while the process is still running.
Deviations?

- Is the model or the log "wrong"?
- "Desirable" or "undesirable" deviations?
- "Breaking the glass" may save lives!
Another important use case: Evaluation of process mining algorithms

Model 1 produced by algorithm A
Model 2 produced by algorithm B
Model 3 produced by algorithm C
Model 4 produced by algorithm D
Replay: Connecting events to model elements is essential for process mining

Play-In

- event log
- process model

Play-Out

- process model
- event log

Replay

- event log
- process model
- extended model showing times, frequencies, etc.
- diagnostics
- predictions
- recommendations
Replay

A B C D

start

p1

E

p3

p4

end
Replay can detect problems

Problem! token left behind

Problem! missing token

start

p1

p2

p3

p4

end
Replay is not just useful for conformance checking!

e.g. bottleneck analysis

\[A^5B^8C^9D^{13} \]
Conformance checking by playing the "token game"
Replaying trace “abeg”

\[\text{fitness}(\sigma, N) = \frac{1}{2} \left(1 - \frac{1}{6} \right) + \frac{1}{2} \left(1 - \frac{1}{6} \right) = 0.83333 \]
Approach

• Use four counters:
 • \(p \) = produced tokens
 • \(c \) = consumed tokens
 • \(m \) = missing tokens
 • \(r \) = remaining tokens

• Invariants:
 • At any time: \(p + m \geq c \geq m \) (also per place)
 • At the end: \(r = p + m - c \) (also per place)

• Special actions:
 • In the beginning a token will be produced for the source place: \(p = 1 \).
 • At the end a token is removed from the sink place (also if not there): \(c' = c + 1 \).
Replaying (1/3) \(\sigma_1 \) on \(N_1 \)

\[\sigma_1 = \langle a, c, d, e, h \rangle \]
Replaying (2/3)

\[\sigma_1 = \langle a, c, d, e, h \rangle \]

Graph with transitions and states:

- Start state: p=4, c=2, m=0, r=0
- End state: p=5, c=3, m=0, r=0
Replaying (3/3)

$\sigma_1 = \langle a, c, d, e, h \rangle$

No problems found!
Replaying (1/3)
\(\sigma_3\) on N_2

\(\sigma_3 = (a, d, c, e, h)\)
Replaying (2/3)

\[\sigma_3 = \langle a, d, c, e, h \rangle \]
Replaying (3/3)

\[\sigma_3 = \langle a, d, c, e, h \rangle \]

\[
\begin{array}{c}
 p=5 \\
c=4 \\
m=1 \\
r=0 \\
\end{array}
\]

\[
\begin{array}{c}
p=6 \\
c=5 \\
m=1 \\
r=0 \\
\end{array}
\]

\[
\begin{array}{c}
p=6 \\
c=6 \\
m=1 \\
r=1 \\
\end{array}
\]
Problems encountered when replaying σ_3 on N_2

- One missing token (of 6 consumed tokens)
- One remaining token (of 6 produced tokens)

$$\sigma_3 = \langle a, d, c, e, h \rangle$$

$$fitness(\sigma, N) = \frac{1}{2} \left(1 - \frac{m}{c} \right) + \frac{1}{2} \left(1 - \frac{r}{p} \right)$$
Computing fitness at trace level

\[
\text{fitness}(\sigma_3, N_2) = \frac{1}{2} \left(1 - \frac{1}{6}\right) + \frac{1}{2} \left(1 - \frac{1}{6}\right) = 0.8333
\]
Computing fitness at the log level

\[
\text{fitness}(L, N) = \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times m_{N, \sigma}}{\sum_{\sigma \in L} L(\sigma) \times c_{N, \sigma}} \right) + \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times r_{N, \sigma}}{\sum_{\sigma \in L} L(\sigma) \times p_{N, \sigma}} \right)
\]

Looks scary, but is just the sums of \(p, c, m,\) and \(r\) over the multiset of traces in the event log …
Compute fitness

<table>
<thead>
<tr>
<th>#</th>
<th>trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>455</td>
<td>acdeh</td>
</tr>
<tr>
<td>191</td>
<td>abdeg</td>
</tr>
<tr>
<td>177</td>
<td>adceh</td>
</tr>
<tr>
<td>144</td>
<td>abdeh</td>
</tr>
<tr>
<td>111</td>
<td>acdeg</td>
</tr>
<tr>
<td>82</td>
<td>adceg</td>
</tr>
<tr>
<td>56</td>
<td>abbeh</td>
</tr>
<tr>
<td>47</td>
<td>acdefdbbeh</td>
</tr>
<tr>
<td>38</td>
<td>abdeg</td>
</tr>
<tr>
<td>33</td>
<td>acdefbdeh</td>
</tr>
<tr>
<td>14</td>
<td>acdefbdeg</td>
</tr>
<tr>
<td>11</td>
<td>acdefdbdeg</td>
</tr>
<tr>
<td>9</td>
<td>acdefcdeh</td>
</tr>
<tr>
<td>8</td>
<td>acdefdbbeh</td>
</tr>
<tr>
<td>5</td>
<td>acdefbdeg</td>
</tr>
<tr>
<td>3</td>
<td>acdefbdefdbbeg</td>
</tr>
<tr>
<td>2</td>
<td>acdefdbbeg</td>
</tr>
<tr>
<td>2</td>
<td>acdefbdefbdeg</td>
</tr>
<tr>
<td>1</td>
<td>acdefbdefbdeh</td>
</tr>
<tr>
<td>1</td>
<td>abefbdefdbbeg</td>
</tr>
<tr>
<td>1</td>
<td>acdefbdefcdefdbbeg</td>
</tr>
</tbody>
</table>

©Wil van der Aalst TU/e (use only with permission & acknowledgements)
Computed fitness

\[
\text{fitness}(L, N) = \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times m_{N, \sigma}}{\sum_{\sigma \in L} L(\sigma) \times c_{N, \sigma}}\right) + \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times r_{N, \sigma}}{\sum_{\sigma \in L} L(\sigma) \times p_{N, \sigma}}\right)
\]

- \(\text{fitness}(L_{\text{full}}, N_1) = 1\)
- \(\text{fitness}(L_{\text{full}}, N_2) = 0.9504\)
- \(\text{fitness}(L_{\text{full}}, N_3) = 0.8797\)
- \(\text{fitness}(L_{\text{full}}, N_4) = 1\)
Diagnostics

\[
(fitness(L_{full}, N_2) = 0.9504)
\]

Problem
443 tokens remain in place p2, because \(d\) did not occur although the model expected \(d\) to happen.

Problem
443 tokens were missing in place p2 during replay, because \(d\) happened even though this was not possible according to the model.

\[
fitness(L, N) = \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times m_{N, \sigma}}{\sum_{\sigma \in L} L(\sigma) \times c_{N, \sigma}} \right) + \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times r_{N, \sigma}}{\sum_{\sigma \in L} L(\sigma) \times p_{N, \sigma}} \right)
\]
Diagnostics

\[\text{fitness}(L_{full}, N_3) = 0.8797 \]

Problem:
- 430 tokens remain in place \(p_1 \), because \(c \) did not happen while the model expected \(c \) to happen

Problem:
- 566 tokens were missing in place \(p_3 \) during replay, because \(e \) happened while this was not possible according to the model

Problem:
- 10 tokens were missing in place \(p_1 \) during replay, because \(c \) happened while this was not possible according to the model

Problem:
- 146 tokens were missing in place \(p_2 \) during replay, because \(d \) happened while this was not possible according to the model

Problem:
- 607 tokens remain in place \(p_5 \), because \(h \) did not happen while the model expected \(h \) to happen

Problem:
- 461 of the 1391 cases did not reach place end
Drilling down

- Global conformance measures
- Drill down
- New event log: starting point for process and data mining techniques
- Local diagnostics
- Replay
Not just replay fitness …

- **fitness**: Ability to explain observed behavior
- **precision**: Avoiding underfitting
- **generalization**: Avoiding overfitting
- **simplicity**: Occam’s Razor

Process Mining

- **lift**: Thrust
- **drag**: Gravity
examples
Exercise 1:
Compute fitness using missing and remaining tokens

- Consider the event log containing 35 cases.
- What is the fitness?
Let us pick one trace: acd

<table>
<thead>
<tr>
<th>trace</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>abcd</td>
<td>10</td>
</tr>
<tr>
<td>acbd</td>
<td>10</td>
</tr>
<tr>
<td>aed</td>
<td>10</td>
</tr>
<tr>
<td>abd</td>
<td>2</td>
</tr>
<tr>
<td>acd</td>
<td>1</td>
</tr>
<tr>
<td>ad</td>
<td>1</td>
</tr>
<tr>
<td>abbd</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
\text{fitness}(L, N) = \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times m_{N, \sigma}}{\sum_{\sigma \in L} L(\sigma) \times c_{N, \sigma}} \right) + \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times r_{N, \sigma}}{\sum_{\sigma \in L} L(\sigma) \times p_{N, \sigma}} \right)
\]
Fitness = 0.9658

$$fitness(L, N) = \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times m_{N, \sigma}}{\sum_{\sigma \in L} L(\sigma) \times c_{N, \sigma}} \right) + \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times r_{N, \sigma}}{\sum_{\sigma \in L} L(\sigma) \times p_{N, \sigma}} \right)$$

<table>
<thead>
<tr>
<th>Trace</th>
<th>Frequency</th>
<th>Produced Tokens (p)</th>
<th>Remaining Tokens (r)</th>
<th>Consumed Tokens (c)</th>
<th>Missing Tokens (m)</th>
<th>Produced Tokens (all)</th>
<th>Remaining Tokens (all)</th>
<th>Consumed Tokens (all)</th>
<th>Missing Tokens (all)</th>
</tr>
</thead>
<tbody>
<tr>
<td>abcd</td>
<td>10</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>acbd</td>
<td>10</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>aed</td>
<td>10</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>abd</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>acd</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>ad</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>abbd</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

205
sum p
7
sum r
205
sum c
7
sum m
fitness
0.965853659

© Wil van der Aalst TU/e (use only with permission & acknowledgements)
ProM 5.2 output
(ProM 6 only supports more advanced conformance checking techniques)

30 of 35 cases are fitting (85%)

fitness of 0.965853

total of 7=2+4+1 remaining tokens

total of 7=1+2+4 missing tokens

fitness of 0.96585363

30 of 35 cases are fitting (85%)
Exercise 2: Compute fitness using missing and remaining tokens

- Consider an event log containing just one case composed of one event, $L = \langle e \rangle$.
- What is the fitness?
Replay $\langle e \rangle$

\[
\text{fitness}(L,N) = \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times m_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times c_{N,\sigma}} \right) + \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times r_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times p_{N,\sigma}} \right)
\]

\[p = 3\]
\[c = 3\]
\[m = 3\]
\[r = 3\]

fitness = 0!
Result in ProM

fitness = 0

\[
\text{fitness}(L,N) = \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times m_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times c_{N,\sigma}} \right) + \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times r_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times p_{N,\sigma}} \right)
\]
Exercise 3:
Compute fitness using missing and remaining tokens

Consider the event log containing 33 cases.
What is the fitness?
Fitness = 0.895705521

<table>
<thead>
<tr>
<th>trace</th>
<th>frequency</th>
<th>produced tokens (p)</th>
<th>remaining tokens (r)</th>
<th>consumed tokens (c)</th>
<th>missing tokens (m)</th>
<th>produced tokens (all)</th>
<th>remaining tokens (all)</th>
<th>consumed tokens (all)</th>
<th>missing tokens (all)</th>
</tr>
</thead>
<tbody>
<tr>
<td>acd</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>bce</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>ace</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>25</td>
<td>5</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>bcd</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>25</td>
<td>5</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>dca</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>abd</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

\[
\text{fitness}(L,N) = \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times m_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times c_{N,\sigma}} \right) + \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times r_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times p_{N,\sigma}} \right)
\]

<table>
<thead>
<tr>
<th>sum p</th>
<th>sum r</th>
<th>sum c</th>
<th>sum m</th>
</tr>
</thead>
<tbody>
<tr>
<td>163</td>
<td>17</td>
<td>163</td>
<td>17</td>
</tr>
</tbody>
</table>

fitness = 0.895705521
ProM 5.2 output

Fitness of 0.8957

Total of 1 = 1 + 3 + 6 + 6 + 1 remaining tokens

Total of 17 = 1 + 1 + 7 + 5 + 3 missing tokens
Exercise 4:
Compute fitness using missing and remaining tokens

- Consider the event log containing 20 cases.
- What is the fitness?

<table>
<thead>
<tr>
<th>trace</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>abefcdd</td>
<td>10</td>
</tr>
<tr>
<td>abbeffccd</td>
<td>10</td>
</tr>
</tbody>
</table>
Fitness = 0.8

<table>
<thead>
<tr>
<th>trace</th>
<th>frequency</th>
<th>produced tokens (p)</th>
<th>remaining tokens (r)</th>
<th>consumed tokens (c)</th>
<th>missing tokens (m)</th>
<th>produced tokens (all)</th>
<th>remaining tokens (all)</th>
<th>consumed tokens (all)</th>
<th>missing tokens (all)</th>
</tr>
</thead>
<tbody>
<tr>
<td>abefcd</td>
<td>10</td>
<td>9</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td>90</td>
<td>20</td>
<td>90</td>
<td>20</td>
</tr>
<tr>
<td>abbefccd</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>11</td>
<td>2</td>
<td>110</td>
<td>20</td>
<td>110</td>
<td>20</td>
</tr>
</tbody>
</table>

\[
\text{fitness}(L,N) = \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times m_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times c_{N,\sigma}} \right) + \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times r_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times p_{N,\sigma}} \right)
\]
ProM 5.2 output

- total of 40 = 10 + 10 + 20 remaining tokens
- fitness of 0.8

- total of 40 = 20 + 10 + 10 missing tokens
comparing footprints
Footprints

<table>
<thead>
<tr>
<th>#</th>
<th>trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>455</td>
<td>acdeh</td>
</tr>
<tr>
<td>191</td>
<td>abdeg</td>
</tr>
<tr>
<td>177</td>
<td>adceh</td>
</tr>
<tr>
<td>144</td>
<td>abdeh</td>
</tr>
<tr>
<td>111</td>
<td>acdeg</td>
</tr>
<tr>
<td>82</td>
<td>acdefg</td>
</tr>
<tr>
<td>56</td>
<td>abdeh</td>
</tr>
<tr>
<td>47</td>
<td>acdefdbeh</td>
</tr>
<tr>
<td>38</td>
<td>acdefbeg</td>
</tr>
<tr>
<td>33</td>
<td>acdefbdeh</td>
</tr>
<tr>
<td>14</td>
<td>acdefbeg</td>
</tr>
<tr>
<td>11</td>
<td>acdefdbeg</td>
</tr>
<tr>
<td>9</td>
<td>acdefcdeh</td>
</tr>
<tr>
<td>8</td>
<td>acdefdbeh</td>
</tr>
<tr>
<td>5</td>
<td>acdefdbeg</td>
</tr>
<tr>
<td>3</td>
<td>acdefbdeh</td>
</tr>
<tr>
<td>2</td>
<td>acdefdbeg</td>
</tr>
<tr>
<td>2</td>
<td>acdefbdefdbeg</td>
</tr>
<tr>
<td>1</td>
<td>acdefbdefbdeh</td>
</tr>
<tr>
<td>1</td>
<td>adbfbdefdbeg</td>
</tr>
<tr>
<td>1</td>
<td>acdefdbefbdeh</td>
</tr>
<tr>
<td>1</td>
<td>acdefdbefcdefdbeg</td>
</tr>
</tbody>
</table>

Diagrams

- **N1**
 - Start: register request (a)
 - Examine thoroughly (b)
 - Examine casually (c)
 - Check ticket (d)
 - Decide (e)
 - Pay compensation (g)
 - Reject request (h)

- **N2**
 - Start: register request (a)
 - Examine thoroughly (b)
 - Examine casually (c)
 - Check ticket (d)
 - Decide (e)
 - Pay compensation (g)
 - Reject request (h)

- **N3**
 - Start: register request (a)
 - Examine casually (c)
 - Check ticket (d)
 - Decide (e)
 - Reject request (h)

- **N4**
 - Start: register request (a)
 - Examine thoroughly (b)
 - Examine casually (c)
 - Decide (e)
 - Reinitiate request (f)
 - Pay compensation (g)
 - Reject request (h)
Comparing footprints

L_{full} and N_1

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>#</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>b</td>
<td>←</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>→</td>
<td>←</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>c</td>
<td>←</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>→</td>
<td>←</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>d</td>
<td>←</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>←</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>e</td>
<td>#</td>
<td>←</td>
<td>←</td>
<td>←</td>
<td>#</td>
<td>→</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>f</td>
<td>#</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>←</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>g</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>←</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>h</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>←</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

Diagram N_1

- **Start**: Register request
- **End**: Pay compensation
- **Activities**:
 - Examine request thoroughly
 - Examine request casually
 - Decide to pay compensation
 - Reject request
 - Reinitiate request

© Wil van der Aalst TU/e (use only with permission & acknowledgements)
\[N_1 \]

- **a**: start register request
- **b**: examine thoroughly
- **c**: examine casually
- **d**: check ticket
- **e**: decide
- **f**: reinitiate request
- **g**: pay compensation
- **h**: reject request

N_2

\[L_{full} \text{ and } N_1 \]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>#</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>b</td>
<td>←</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td>→</td>
<td>←</td>
</tr>
<tr>
<td>c</td>
<td>←</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td>→</td>
<td>←</td>
</tr>
<tr>
<td>d</td>
<td>←</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#</td>
</tr>
<tr>
<td>e</td>
<td>#</td>
<td>←</td>
<td>←</td>
<td>←</td>
<td>#</td>
<td>→</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>f</td>
<td>#</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>←</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>g</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>←</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>h</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>←</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>a</td>
<td>#</td>
<td>→</td>
<td>→</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>b</td>
<td>←</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>→</td>
<td>#</td>
<td>←</td>
<td>#</td>
</tr>
<tr>
<td>c</td>
<td>←</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>←</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>d</td>
<td>#</td>
<td>←</td>
<td>←</td>
<td>#</td>
<td>#</td>
<td>←</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>e</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>←</td>
<td>#</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>f</td>
<td>#</td>
<td>→</td>
<td>→</td>
<td>#</td>
<td>←</td>
<td>#</td>
<td>←</td>
<td>#</td>
</tr>
<tr>
<td>g</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>←</td>
<td>#</td>
<td>←</td>
<td>#</td>
</tr>
<tr>
<td>h</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>←</td>
<td>#</td>
<td>←</td>
<td>#</td>
</tr>
</tbody>
</table>

N2

- **a**: start register request
- **b**: examine thoroughly
- **c**: examine casually
- **d**: check ticket
- **e**: decide
- **f**: pay compensation
- **g**: reject request
- **h**: reinitiate request

End **N1**

- **p1**: register request
- **p2**: examine casually
- **p3**: check ticket
- **p4**: pay compensation
- **p5**: reject request
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>#</td>
<td>→</td>
<td>→</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>b</td>
<td>←</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>←</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>c</td>
<td>←</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>←</td>
<td>→</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>d</td>
<td>#</td>
<td>←</td>
<td>←</td>
<td>#</td>
<td>←</td>
<td>→</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>e</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>←</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>f</td>
<td>#</td>
<td>→</td>
<td>→</td>
<td>#</td>
<td>←</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>g</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>←</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>h</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>←</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

\[N_2 \]

\[L_{full} \text{ and } N_1 \]
Differences quantified

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>←: #</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>←: #</td>
</tr>
<tr>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>←: #</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(x:y\) where \(x\) is in log or \(N_1\) and \(y\) in \(N_2\)

\[
1 - \frac{12}{64} = 0.8125
\]
Diagnostics

(x:y where x is in log or N_1 and y in N_2)

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\rightarrow: #</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\parallel: \rightarrow \rightarrow: #</td>
</tr>
<tr>
<td>c</td>
<td>\leftarrow: #</td>
<td>\parallel: \leftarrow</td>
<td>\parallel: \leftarrow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\leftarrow: #</td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td>\leftarrow: #</td>
<td>\leftarrow: #</td>
<td>\leftarrow: #</td>
<td></td>
<td>\rightarrow: #</td>
</tr>
</tbody>
</table>

N_1

- **a** (start register request)
- **b** (examine thoroughly)
- **c** (examine casually)
- **d** (check ticket)
- **e** (decide)
- **f** (pay compensation)
- **g** (reject request)
- **h** (reinitiate request)

N_2

- **a** (start register request)
- **b** (examine thoroughly)
- **c** (examine casually)
- **d** (check ticket)
- **e** (decide)
- **f** (reject request)
- **g** (pay compensation)
- **h** (reinitiate request)

L_{full} and N_1

N_2
conformance checking based on alignments
Connecting event log and model

- Very important!
- Model may be discovered or hand-made.
- Connected during replay.
- Starting point for other types of process mining!
From “playing the token game” to optimal alignments …

191 times “abde...”

<table>
<thead>
<tr>
<th>#</th>
<th>trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>455</td>
<td>acdeh</td>
</tr>
<tr>
<td>191</td>
<td>abdeh</td>
</tr>
<tr>
<td>177</td>
<td>adceh</td>
</tr>
<tr>
<td>144</td>
<td>abdeh</td>
</tr>
<tr>
<td>111</td>
<td>acdeg</td>
</tr>
<tr>
<td>82</td>
<td>adceg</td>
</tr>
<tr>
<td>56</td>
<td>abeh</td>
</tr>
<tr>
<td>47</td>
<td>acdefbdeh</td>
</tr>
<tr>
<td>38</td>
<td>adbeg</td>
</tr>
<tr>
<td>33</td>
<td>acdefbdeh</td>
</tr>
<tr>
<td>14</td>
<td>acdefbdeg</td>
</tr>
<tr>
<td>11</td>
<td>acdefdbeg</td>
</tr>
<tr>
<td>9</td>
<td>acdefcdeh</td>
</tr>
<tr>
<td>8</td>
<td>acdefbdeh</td>
</tr>
<tr>
<td>5</td>
<td>acdefbdeg</td>
</tr>
<tr>
<td>3</td>
<td>acdefbdefdbeg</td>
</tr>
<tr>
<td>2</td>
<td>acdefdbeg</td>
</tr>
<tr>
<td>2</td>
<td>acdefbdefdbeg</td>
</tr>
<tr>
<td>1</td>
<td>acdefbdefbdeh</td>
</tr>
<tr>
<td>1</td>
<td>acdefbdefdbeg</td>
</tr>
<tr>
<td>1</td>
<td>acdefbdefdbeg</td>
</tr>
<tr>
<td>1391</td>
<td></td>
</tr>
</tbody>
</table>
Example alignments

abdeg

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>d</th>
<th>e</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>d</td>
<td>e</td>
<td>g</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>d</td>
<td>e</td>
<td>g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>d</th>
<th>e</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>d</td>
<td>e</td>
<td>g</td>
</tr>
<tr>
<td>a</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>d</th>
<th>e</th>
<th>g</th>
<th>g</th>
<th>g</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>»</td>
<td>»</td>
<td>»</td>
<td>»</td>
<td>»</td>
<td>»</td>
<td>»</td>
<td>»</td>
</tr>
<tr>
<td>»</td>
<td>»</td>
<td>»</td>
<td>»</td>
<td>»</td>
<td>a</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>
Moves in an alignment

- **move in log**

- **trace in event log**

- **possible run of model**

- **move in model**

- **move in both**
Moves have costs

- Standard cost function:
 - $c(x, \rightarrow) = 1$
 - $c(\rightarrow, y) = 1$
 - $c(x, y) = 0$, if $x=y$
 - $c(x, y) = \infty$, if $x\neq y$
Optimal alignment (smallest costs)

abdeg

optimal

a b d e g

0

a b d e g

2

a b d e g

10

a b d e g

©Wil van der Aalst TU/e (use only with permission & acknowledgements)
Non-fitting trace: abefdeg

abefdeg
Any cost structure is possible

<table>
<thead>
<tr>
<th>...</th>
<th>send-letter(John, 2 weeks, $400)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>send-email(Sue, 3 weeks, $500)</td>
<td>...</td>
</tr>
</tbody>
</table>

- Similar activities (more similarity implies lower costs).
- Resource conformance (done by someone that does not have the specified role).
- Data conformance (path is not possible for this customer).
- Time conformance (missed the legal deadline).
- cf. cost/risk-aware BPM (costs = risk).
Advantages of aligning log and model

- Observed behavior is directly related to modeled behavior.
- Highly flexible (any cost structure).
- Detailed diagnostics.
- After aligning log and model, other quality dimensions can be investigated (separation of concerns).
- Efficiently implemented in ProM.
Alignments are essential!

- conformance checking to diagnose deviations
- squeezing reality into the model to do model-based analysis
process model

event log

synchronous move

move on model only

move on log only

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>c</td>
<td>d</td>
<td>f</td>
<td>h</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>d</td>
<td>τ</td>
<td>t</td>
</tr>
</tbody>
</table>
| *t*1 | *t*4 | *t*3 | *t*5 | *t*7 | *t*10
Loops of “W_Completeren aanvraag” and “W_Nabellen offertes” are often performed

“O_DECLINED” and “W_Wijzigen contractgegevens” are often skipped

Many moves on log of “O_CANCELED”, “O_CREATED”, “O_SELECTED”, “O_SENT” occurred with the same frequency value (i.e. 60) before parallel branch

Many moves on log of “W_Afhandelen leads” (> 2200 times) occurred in the end of traces

Work of Arya Adriansyah and Boudewijn van Dongen (Replay project)
Loops of “W_Completeren aanvraag” and “W_Nabellen offertes” are often performed.

Many moves on log of “O_DECLINED” and “W_Wijzigen contractgegevens” are often skipped.

Many moves on log of “O_CANCELLED”, “O_CREATED”, “O_SELECTED”, “O_SENT” occurred with the same frequency value (i.e. 60) before parallel branch “W_Afhandelen leads” (> 2200 times) occurred in the end of traces.

Loops of “W_Completeren aanvraag” and “W_Nabellen offertes” are often performed.

Synchronous moves of “Completeren aanvraag” Move on log of “Completeren aanvraag”

Moves on model towards end of traces Move on log of “O_CANCELLED” and “A_CANCELLED”
The average waiting time for the input place of “W_Nabellen offertes+START” is very long (2.83 days) compares to the average waiting time of other places.

“O_ACCEPTED” has average sojourn time of 27.07 minutes, while “A_REGISTERED”, “A_ACTIVATED”, and “A_APPROVED” have average sojourn time of 29.56 minutes.

Activity “W_Wijzigen contractgegevens” is the bottleneck, but it occured rarely (only 4 times).

Business analyst's toolbox
traffic jams are projected on map

also conformance problems can be shown (in real-time if needed)
conclusion and outlook
Conformance checking

"world"
people
machines
components
organizations

models
analyzes

business processes

supports/controls

software system

specifies
configures
implements
analyzes

records
events, e.g.,
messages,
transactions,
etc.

(event)
model

(discovery)

(conformance)

enhancement

©Wil van der Aalst TU/e (use only with permission & acknowledgements)