
Adaptive Hypermedia System for Supporting Information
Providers in Directing Users through Hyperspace

Yoshinori Hijikata, Tetsuya Yoshida and Shogo Nishida

Graduate School of Engineering Science, Osaka University, JP
E-mail:hijikata@nishilab.sys.es.osaka-u.ac.jp

ABSTRACT
This paper introduces an adaptive hypermedia system that
provides a means for information providers to direct their
users through hyperspace. With our system, the information
providers are able to easily direct users to their own person-
alized navigation paths. Destination options are determined
by hiding links and by applying rules so that the users are of-
fered the best paths for them. In order to reduce the informa-
tion providers’ efforts in creating navigation rules, we sim-
plified the format of these rules and offer an authoring tool
that verifies the navigation rules and reports any errors if they
exist. This tool not only allows the information providers to
easily write navigation rules but also guarantees the adequacy
of the navigation path.

KEYWORDS: adaptive hypremedia, navigation, rule, link
hiding, authoring tool

INTRODUCTION
The WWW (World-Wide Web) has become popular as a tool
for information retrieval. Furthermore its applications are di-
versifying into such areas as electronic commerce, market-
ing and education [14]. In these kinds of application, the in-
formation providers or the Web masters often want to direct
their users through hyperspace as desired according to each
user’s preferences and status. For example, to offer teaching
materials according to the learner’s knowledge or study his-
tory, to regulate obscene contents to prevent children from
viewing them, and to guide marketing campaign so that ban-
ner ads and item recommendations are in accord with each
customer’s preferences.

Some researchers have been studying these kinds of user nav-
igation aids in the research field of adaptive hypermedia [1].
Adaptive hypermedia is hypermedia with functions to dy-
namically adapt to each user. A hypermedia document is
the basic component of the WWW and allows users to freely
move and retrieve information in hyperspace, which consists
of nodes containing information and links relating the nodes.
Adaptive hypermedia systems realize their user-adaptations
based on various kinds of user information such as the user’s
prior knowledge, objectives and interests. Many adaptive hy-
permedia systems implement user-navigation guidance cre-
ated by the information providers, using methods that allow

the information providers to describe the navigation rules
according to user categories and user behaviors defined in
advance[2, 4, 5, 6, 7, 8, 9, 10, 13]. However this method
leads to the following problems:

1. Information providers have great difficulty describing the nav-
igation rules as they move towards fine-grained navigation
control.

2. It becomes difficult to predict the resulting states for various
kinds of users, because the navigation dynamically varies ac-
cording to each user.

These problems become more critical as the need to direct
users accurately increases.

This research aims to construct an adaptive hypermedia sys-
tem that reduces the burden on information providers and
prevents errors in the described navigation rules. We pro-
pose a system solving the above problems by the following
mechanisms:

1. A simplified format for navigation rules.

2. An authoring tool that examines the navigation rules.

Existing hypermedia systems do not focus on providing mech-
anisms and functions that can reduce the burden on informa-
tion providers for creating and verifying navigation rules.

In the proposed system, (1) destination options are deter-
mined by hiding links so that information providers can di-
rect users accurately, (2) long-term and short-term user in-
formation can be used in the navigation rule, because it is
generally important to consider users from both perspectives
[12], and (3) the format of user information is also simple,
because the format of navigation rule is simple.

This paper is organized as follows. First, we introduce ex-
isting navigation methods and user models, and explain the
reason why we adopted link hiding and the type of user in-
formation used in our system. After that we describe the
navigation method and rule format of our system and explain
the authoring tool. Next we describe the implementation of
the system and its evaluation. Finally we offer some conclu-
sions.

1

ADAPTATION METHOD AND USER MODEL
Existing adaptive hypermedia systems construct a user model
and use it for adapting to each user [1]. The user models de-
scribe information about the users such as the users’ knowl-
edge, objectives, and interests. This section describes the
adaptation method and the user model.

Adaptation method
Adaptation methods can be classified into content-level adap-
tation and link-level adaptation[1]. Content-level adaptation
adapts the displayed content of the node. Link-level adap-
tation adapts the links of the node. We adopted link-level
adaptation, because the focus of this research is on how in-
formation providers can direct users through hyperspace.

Link-level adaptation can be classified into the four types
(direct guidance, adaptive ordering, hiding, adaptive anno-
tation) according to how the links are modified [1]. Direct
guidance attaches an explanation to the link the user should
follow or inserts a [Next Link] button for directing the user.
Adaptive ordering sorts links in the order of the degree of
suitability to the user. Hiding narrows the accessible hyper-
space by hiding links. Adaptive annotation attaches addi-
tional decorations such as icons and colors to the links.

Out of these four kinds of link-level adaptation, direct guid-
ance, adaptive ordering and adaptive annotation may display
links that the information provider does not recommend. Al-
though this leads to the problem the user may not always fol-
low the information provider’s intentioned navigation paths,
it also gives the user the freedom to select links the infor-
mation provider does not recommend. These approaches are
especially suitable for applications like (1) information re-
trieval systems and (2) learning systems that focus on the
learners’ active information retrieval.

The link hiding method does not display any extraneous links.
Although this forces the user to follow the information provider’s
navigation paths, it has the corresponding advantage that the
information provider can always direct the users as desired.
This constrained approach is suitable for applications such as
(1) learning systems for business training where the learner
follows the information provider’s directions to acquire the
knowledge quickly, (2) help systems for application software,
and (3) information systems that screen obscene content from
children. We adopted link hiding because our system focuses
on the situation where the information provider wants to di-
rect users precisely.

User model
As user models for adaptive hypermedia, there are overlay
models, stereotype models, and models using keywords[1].
An overlay model is based on a structural domain model
which is represented as a semantic network of domain con-
cepts. A stereotype model assigns the user to one of several
possible stereotypes for each dimension of classification. A
model using keywords is represented as a vector or a matrix

A 0

C 1 B 2

B 3

Rule:
.......
.....

Figure 1: Hypermedia model.

whose elements are the degree of interest in a keyword or
topic. Although it is simple as a model, a browsing history
expressed with the permutation of URL is also used for some
Web applications. This is useful for describing the user’s re-
cent browsing action.

Since it is generally important to consider long-term and short-
term user information for designing user models [12], we
also use both kinds of user information. Since our system
simplifies the format of navigation rule, we also make our
user model simple. We use pairs consisting of a property and
a value (we call ”user parameter”) for modeling the user’s
long-term information. This approach is actually similar to
all three kinds of user model described above. We also use
a browsing history represented as the sequence of the node
classifications (we call ”path history”) for modeling the user’s
short-term information.

NAVIGATION METHOD
Hypermedia model
Figure 1 shows the hypermedia model used in our system.
The circles in the figure show hypermedia nodes. The con-
tent displayed for the users are contained in these nodes. The
user can move between nodes by following a link represented
as a straight line with an arrowhead. We also define a re-
turn link represented as a dotted line with an arrowhead. Al-
though the user cannot follow this link, this is required for
implementing the authoring tool (explained in the next sec-
tion). The identity of the node is represented by a number
and node classes (explained later) are represented by alpha-
betic characters. Some of the nodes have navigation rules
(explained later) as created by the information provider.

Class
Every node has a ”class” represented by symbols such as al-
phabetic characters. The reason why we introduced the no-
tion of class is to allow information providers to describe the
navigation rules by generalizing and specializing the charac-
teristics and meanings of the navigation rules. Class is used
for representing the user model and the navigation rules. The
information provider defines a class in terms of the following
distinctions:

1. Whether or not the system displays the contents for a specific
kind of user.

2. Whether or not the node offers users an explanation, asks a
question, or does something else for an educational purpose.

3. Which of several categories of contents the node belongs to
(in cases where the information provider deals with informa-
tion in more than one category).

Representation of user model
The user parameter is represented as a value from some range.
The information provider assigns a meaning to the user pa-
rameter according to his/her navigation control. The user, the
information provider, or some other person sets the value of
a parameter. For example, they can be set by asking users
to answer a questionnaire or by using the results of regular
paper tests in academic environments.

The path history is represented concisely as the sequence of
classes of the nodes the user has visited, and indicates the or-
der of information the user has browsed. If the user browsed
nodes in an order such that their classes wereC → A →
B → B → A, the path history is represented asCABBA.

Navigation rule
This system decides which links to hide based on a naviga-
tion rule that may be associated with the current node. There
are four kinds of navigation rules: (1) node path rules, (2)
general path rules, (3) node user rules, (4) general user rules.

A navigation rule that uses a path history is called a path rule
and a navigation rule that uses a user parameter is called a
user rule. The navigation rule can also be classified into two
types, node rules and general rules. A node rule is defined
and applied only for a specific node. A general rule is for de-
scribing frequently followed navigation paths in hyperspace
and frequently used segmentation of the range of the user pa-
rameter. The information provider can apply it for any node.

In a navigation rule, the information provider should describe
the links that should be displayed by the node ID or by the
class of the node that is the target of the link. The system
hides all links that are not referenced in a navigation rule
as links to be displayed. The format of these four kinds of
navigation rule is as follows:

1. Node path rule

C11 · · · C1h + · · · + Cm1 · · · Cmh

= D1, · · ·, Dn (1)

2. General path rule

C11 · · · C1h + · · · + Cm1 · · · Cmh

= Cf
1 , · · ·, Cf

n (2)

3. Node user rule

e1#Pi#e2 : D1, D2, · · ·, Dn (3)

4. General user rule

e1#Pi#e2 : Cf
1 , Cf

2 , · · ·, Cf
n (4)

The above variables represent the following:
C: Class
D: Id of the node to be shown
Cf : Class of the node to be shown
h: Number of histories that will be referred to
m: Number of path patterns
n: Number of IDs or classes of nodes to be shown
Pi: Theith user parameter (property)
e: Boundary number of the user parameter
The symbol ’#’ represents one of the following three opera-
tors:<, ≤ or =.

Cm1 · · ·Cmh in the path rules (1) and (2) shows the path his-
tory pattern, which represents the order of the user’s search
in hyperspace as a permutation. The path rule means that the
system displays links whose node ID or class is described on
the right part of the rule if the user’s path history matches
one of the path history patterns which are described on the
left side. In user rules (3) and (4),e1#Pi#e2 specifies the
user parameterPi and the applicable range of the parameter
values. The user rule means that the system displays links
whose node ID or class is described on the right side if the
user parameter specified on the left side is within the speci-
fied range.

If a node has several navigation rules, the system displays all
links that any navigation rule accepts. This means that if at
least one rule out of several rules approves the display of a
specific link, the system displays the link regardless of the
other navigation rules.

Example of navigation
Figure 2 shows an example of navigation using path rules
and user rules. For an educational application, the classes
are defined as follows:

• A: Nodes with a question.
• B: Nodes which display an appropriate response when the
user answers correctly.
• C: Nodes which display an appropriate response when the
user answers incorrectly.
• D: Nodes which display an explanation for students with
good school records.
• E: Nodes which display an explanation for students with
poor school records.

We assume that the user parameter stands for the knowledge
level on a specific subject and is set based on the result of a
standard paper examination at the school.

A node path rule is defined for Node No. 5. This rule is
only applicable at this node. ”ACA = 7” in this rule means
that when the user comes to Node No. 5 and the user’s path
history isACA, the system shows the link to Node No. 7 and

A 0

C 1 B 2 C 3

A 4

B 5 C 6

D 7 D 8 D 9 E 10

*1Node Path Rule

ACA=7
ABA=8

General User Rule 1

0<=p1<80 : D
80<=p1<=100 : E

Figure 2: An example of the rules.

hides the link to Node No. 8. Because Class B means that
the user answered correctly and Class C means that the user
answered incorrectly, the history in this order means that the
user answered the question in Node No. 0 incorrectly and
answered the question in Node No. 4 correctly. ”ABA = 8”
means that if the user answered correctly for the question in
Node No. 0 and also answered the question in Node No.4
correctly, then the system shows only the link to Node No.
8. That is to say the system changes the teaching materials
according to the results of the previous questions.

A general user rule is also defined. This rule can be applied
at any node in the hyperspace and in this case Node No. 6
uses it. In this general user rule, if the User Parameter 1 is 0,
or more than 0 and not exceeding 80, the system shows any
links to nodes whose class is D and ignores other links. If the
user parameter is more than 79 and not exceeding 100, the
system shows the link to nodes whose class is E and ignores
other links. Because User Parameter 1 refers to the user’s
knowledge level of a specific subject, this means the system
can offer suitable teaching materials based on the student’s
ability.

AUTHORING TOOL
Objective
Generally an authoring tool is important for an adaptive hy-
permedia system so that the information provider can direct
users in hyperspace [3, 5, 6, 11]. Therefore our system pro-
vides an authoring tool that helps the information provider in
describing the navigation rules. This tool examines the exe-
cution results of the navigation rule before they are incorpo-
rated into nodes. This aims for correct navigation with fewer
errors and for simplification of the information provider’s ef-
forts to describe the navigation rules. We focused on detect-
ing the following two kinds of problems because they can
happen in any kind of content and are very likely to be re-
lated to navigation errors:

1. Dead end: There is a possibility that all links are hidden and
the user cannot go anywhere after reaching a node with a
navigation rule. This dead end problem could be caused by
a bad navigation rule. Were a dead end to appear, it would
force the user to stop searching in hyperspace. This may
create obstacles to the user’s progress.

2. Loop: In some navigation, the user may reach a node where
the user has already been. We call this search looping. As
seen in the WWW, we can use a loop effectively, for example
as a link for returning to a top page, and it has an important
role. However our concerns are that there may be unintended
loops or the user may not be able to follow a loop that the
information provider intended the users to follow. This is be-
cause the system hides links dynamically, which could cause
problems for user navigation.

Dead end detection
A dead end can be caused by a path rule or a user rule or by a
set of rules. This section describes an algorithm that checks
if a dead end will happen in a node (or if there is a possibility
a dead end can happen in the node) because of the path rules
or user rules. In our system, if a node has several kinds of
navigation rules, the system displays all links that any rule
tries to display. It is possible that even if the tool detects a
dead end caused by one kind of navigation rule (e.g. a path
rule) in a node, the other kind of rule (e.g. a user rule) may try
to display links in the node. Therefore when the tool detects
an apparent dead end at a node, it checks whether another
kind of rule is defined. If no other rule is defined for the
node, it has detected a dead end. If another kind of rule is
defined on the node, it has detected the possibility of a dead
end.

Detection of dead ends caused by path rules A dead end
caused by path rules happens when (1) the path history pat-
tern the user has followed is not included in the path rules
or (2) none of the links of the current node are described in
the path rules as displayable, based on the path history pat-
tern the user has followed to reach the current node. Here
is an algorithm to check whether a dead end caused by path
rules will happen or whether there is a possibility that it will
happen in a specific node. This algorithm not only detects
dead ends (dead ends possibility) but outputs the path history
pattern that causes a dead end.

Detection algorithm for dead ends caused by path rules:

1. Node specification: The information provider specifies the
node he/she wants to check.

2. Examination of displayable links: The system checks whether
or not the links to be displayed according to the path his-
tory pattern described in the path rule defined at the specified
node really exist in hyperspace. This is checked by compar-
ing the nodes described as displayable in the path rules with
the nodes that are the targets of the links of the current node.

3. Registration of live path: The system recognizes the path his-
tory pattern, which has links which should be displayed and

really exist, as a live path (If the user follows the live path to
the specified node, there are links to proceed). It registers the
live path in a list according to the length of the path history
pattern. We call this list the live path list.

4. Depth-first search: The system executes a depth-first search
from the current node (It is the specified node at first) using
the return links mentioned in the last section and considering
the current node to be the root of the inverted tree.

5. Path examination: The system refers to the live path list
based on the length of the current depth-first search and checks
whether or not the current path of the depth-first search is a
live path for that node. If it is a live path, the system does not
search deeper on this path, but returns to Step 4 for continu-
ing the depth-first search from the upper node. If it is not a
live path, the system continues to Step 6.

6. Detection of dead end possibility: If the length of the current
depth-first search is the maximum length of the paths reg-
istered in the live path list, the system has determined that
there is a possibility that a dead end happens when the user
follows this path and the search continues to Step 7. If it is
not the maximum length, the system returns to Step 4.

7. Decision on dead end: The system checks if a rule is defined
at any of the nodes on the path. If no navigation rule is de-
fined for any of these nodes, the system has determined that
a dead end happens when the user has followed this path. If
navigation rules are defined for at least one node, the sys-
tem has determined that there is a possibility that a dead end
happens when the user has followed this path. After that the
system returns to Step 4.

Figure 3 shows an execution example of this algorithm. This
example tries to detect a dead end at the shaded node in the
figure. In this case, only the shaded node has navigation rules
and the other nodes do not have any navigation rules. Out of
6 path history patterns in the navigation rule, onlyAB, AA,
ABA, CCA have links which can be displayed and really
exist. The system registers these path history patterns as live
paths. After that, the system executes the depth-first search
and dead end detection. In this example, the pathCCB is
not a live path. The system determines a dead end happens
if the user follows this path, because the length of this path
is the maximum length of the live paths in the live path list
and there are no nodes that have a navigation rule in the path.
CCA is an example of a path that does not cause a dead end,
because it is a live path.

Detection of dead end caused by user rules A dead end
caused by user rules happens when (1) the values of the user’s
user parameters are not within the range described in the user
rules or (2) all displayable nodes described in the user rules
do not exist as target nodes of links of the node where the
user is. Here is an algorithm to check whether a dead end
caused by user rules will happen in a specific node. This
algorithm not only detects dead ends but also outputs the rule
that causes a dead end.

Detection algorithm for dead ends caused by user rules:

C

AB

C

C

AA
AA

FED

ABA+CCA=D,E

AB+AA=F

CCB+CCC=A,C

not live
path

live path

2 : AB, AA

3 : ABA, CCA

Live Path List

Path Rule

Figure 3: An example of dead end detection.

1. Node specification: The information provider specifies the
node he/she wants to check.

2. Examination of displayable link: The system checks whether
or not the displayable link for a specific range of the user
parameter as described in the user rule of the specified node
really exists. This is checked by comparing the displayable
nodes in the user rules with the nodes that are the targets of
the links of the current node. If such links exist, it recognizes
the range as a live range (a range that has displayable links).

3. Examination of the range of the parameter: The system checks
whether or not all ranges of the user parameter are live ranges.
If there is a range that is not a live range, it has determined
that a dead end will occur within that range.

Loops
Even if a path defines a loop without considering the effects
of link hiding, it may not be a loop after link hiding is taken
into account. It is necessary to set a specific user parameter
and follow the path according to the navigation rule to check
if the loop becomes a loop after link hiding. Here is an al-
gorithm to detect loops by doing depth-first search from a
specific node. This algorithm not only detects dead ends but
also outputs the path of the loop.

Loop detection algorithm:

1. Node and maximum length specification: The information
provider specifies the node he/she wants to start the depth-
first search from and the maximum length of depth-first search.

2. Navigation rule execution: The system executes the naviga-
tion rules of the current node and hides links. After that it
registers the displayed links in a displayed link list, which
is necessary to execute depth-first search only using the dis-
played links.

3. Depth-first search execution: Perform one step in a depth-
first search using a link registered in the displayed link list.

4. Loop examination: The system searches for the node ID of
the node it has reached now in the path history of the depth-
first search. If the same node ID exists in the path history,
the system has determined the path from the previous node
which has the same node ID to the current node is a loop.

5. Length check: If the search length of depth-first search is
the length specified in Step 1, the system goes back to the
previous node and returns to Step 3. Otherwise it returns to
Step 2.

In Step 2 of the above algorithm, if a path rule is defined on
the node where the system has reached and the search length
of depth-first search is shorter than the length of the path his-
tory pattern described in the rule, the system cannot execute
a path rule. In this case, the system does not execute the path
rule and displays all links for detecting all possibilities for
loops.

IMPLEMENTATION AND EVALUATION
Implementation of the system
We implemented the system using the C++ language. In the
system, the information provider can use 16 kinds of classes.
The maximum length of the path history is 16. There are
no limits on the other parameters, the number of node, the
number of links, the number of rules, and so on.

Figure 4-(a) shows an example of the system when the user
searches the hyperspace. The user browses text information
and searches by inputting the number of the link. Figures 4-
(b,c) shows examples of the authoring tool. Figure 4-(b) is an
example of dead end detection. It shows the sequences of the
node IDs and the classes of the path history patterns leading
to the information provider’s specified node and causing dead
end. Figure 4-(c) is an example of loop detection. It shows
the sequences of the node IDs of the detected loop.

Objective of evaluation
We evaluated the system from the following viewpoints:

1. Qualitative evaluation of the entire system: This evaluation
looks at how the features of the system, which are the simple
rule format, the authoring tool, and adaptation by link hid-
ing, appeared to the information providers. We asked some
information providers to use this system and give us their
subjective opinion on the effectiveness of the entire system.

2. Quantitative evaluation of the authoring tool: This evalua-
tion examines whether the authoring tool succeeds in reduc-
ing the information providers’ efforts to describe the naviga-
tion rules and insuring correct navigation. We quantitatively
evaluated whether the authoring tool reduced the time that
the information provider required for describing the naviga-
tion rules (the description time) and reduced the number of
errors in the described navigation rules.

Evaluation method
Qualitative evaluation of the entire system Five information
providers created content and described navigation rules for
the content. After that they gave us their subjective opinions

(b) Example of dead end detection

(c) Example of loop detetion

Dead end detection mode
Input target node for detection>15
Input a rule type for detection
1 Path rule 2 User rule
>1
Dead end will occur in the following path.
3->6->9->10->11
C->A->B->A->C

Loop detection mode
Input start node for detection>83
Maximum length of loop>5
Following path will be a loop.
1->24->48->1

(1)
Learning System for Computer Science

1 System Development
2 Operating System
>1
(26)
Question 1 What is the name of system development
method using the following steps.
Analysis of Requirement -> Requirement Definition ->
System Design -> Program Design -> Programming -> Test
-> Employment -> Maintenance
1 Prototype model
2 User model
3 Water fall model
>

(a) Example of search by the user

Figure 4: Output example from the system.

on the system’s effectiveness and problems. They created the
following content:

• Information Provider A: Educational content for science.
• Information Provider B: Educational content for English.
• Information Provider C: Content included obscene parts
that children were not to see.
• Information Provider D: Content for marketing.
• Information Provider E: Content for software on-line man-
ual.

Quantitative evaluation of the authoring tool Ten informa-
tion providers participated in the experiment as subjects. These
subjects were divided into two groups. The subjects of one
group (Group A) described navigation rules without the au-
thoring tool. The subjects of the other group (Group B) de-
scribed navigation rules with the authoring tool. We evalu-
ated the authoring tool based on the description time and the
error ratio in the described navigation rules. The procedure
of the experiment was as follows:

1. Experiment preparation: The experimenter prepared the ex-
periment in the following way:

(a) Prepare content as hypermedia data.

(b) Assign meanings to the user parameters.

(c) Assign meanings to the classes.

(d) Define the class of every node.

(e) Create the task for the experiment (the navigation rules the
subjects should create).

2. Explanation for the subjects: The experimenter explained
how to describe the navigation rule to both groups, and how
to use the authoring tool to Group B. The experimenter asked
the subjects to work on a practice task for getting used to
the system. After that the experimenter explained the task
for the experiment. The experimenter sat by the subject and
answered the subject’s questions, but did not provide direct
hints or solutions for the experimental task.

3. Experiment: Each test subject worked on the task and de-
scribed all navigation rules. The experimenter observed the
subjects working on the task during the experiment and mea-
sured the times taken for the descriptions.

4. Analysis: The experimenter measured the results of the ex-
periment in the following way:

(a) Execute the navigation rule described by the subject and
check (1) whether or not there is an error, (2) whether or not
there is a dead end, and (3) whether or not there is an error in
the loop when the navigation includes a loop.

(b) Calculate the following three evaluation parameters: (1) er-
ror ratio, which is the ratio of the tasks with an error in re-
lation to all tasks, (2) dead end ratio, which is the ratio of
the tasks with a dead end in relation to all tasks, and (3) loop
error ratio, which is the ratio of the tasks with a loop and an
error in relation to all tasks with loop.

(c) Determine the relative effectiveness of the authoring tool as
it affects the above three evaluation parameters.

The content we created for the experiment are intended for
students who study computer science. The size of the con-
tent, the usage of the user parameters and classes, and the
contents of the navigation task are shown in the appendix.

Evaluation result
Qualitative evaluation of the entire system The information
providers offered the following subjective opinions about the
system:

1. I did not need programming knowledge and could describe
the navigation rules easily because the rule format is simple.

2. Users will not hesitate to select links because I hid all the
unnecessary links.

3. When I created the navigation with a loop, I had to check if
the user can follow all of the paths in the loop. However the
authoring tool showed all the paths of the loop and I did not
have to follow all of the paths by myself.

4. The navigation rule with a dead end that was discovered by
the authoring tool also had other errors.

Opinion 1 shows that even information providers who do not
have the programming knowledge accepted the navigation
rule description, because the rule itself is simple. Opinion 2
shows that link hiding reduced the users’ hesitations in hy-
perspace and gave the information provider confidence that
he could correctly direct the users. Opinion 3 shows that
the information providers could recognize whether the loop
paths they created were or were not accessible at a glance, be-
cause the authoring tool displays the sequences of the node
IDs of all of the loop paths. From Opinion 4, we think that
the navigation rule itself is more complex or the information
provider created rules more carelessly in the node that has a
dead end than in the other nodes.

The subjects also pointed out the following problems:

1. I have to describe the path history in a path rule even if I
just want to create an easy navigation rule that only checks
whether or not the user has passed a specific node.

2. I cannot change the user parameters while the user is search-
ing in the hyperspace.

3. I think if the system had some general rules for frequent us-
age prepared in advance, I could describe the navigation rules
faster.

4. I have to check not only dead ends and loops but also the
detailed result of the navigation to see the sets of displayed
links and sets of hidden links according to a specific path.
Without this I have to do simulation by setting user parame-
ters and following the paths.

Solving Problem 1 and Problem 2 has the advantage of strength-
ening the descriptive capability of the navigation rules. One
of the solutions for Problem 1 is providing special user pa-
rameters for temporary flags and rules for updating the spe-
cial user parameters. However this requires the information
provider to manage the flags. The system should support the
management of the flags. As regards Problem 2, we believe
the system should not easily update the long-term user in-
formation (user parameters), because of the need to maintain
the users’ trust of our user model. However if the contents
of the hypermedia are refined enough to manage changing
the user parameters, there should be little problem when the
navigation rules change them. In this case, the information
provider should have the responsibility for the appropriate-
ness of the content and the rules for updating the user param-
eters, because the system cannot guarantee the appropriate-
ness of them.

The general rules for frequent usage mentioned in Problem 3
are important because the information provider can not only
use them but also refer to them. We will provide them as a
navigation rule library for our system. Providing other nav-
igation rule checking functions besides dead end detection
and loop detection would be a solution for Problem 4. How-
ever we only provided dead end and loop detection in the
current version of the authoring tool for our system. The rea-
son is that the information provider can perform simulations

by himself or herself, yet it is hard to manually detect dead
ends and loops. We are considering functions besides dead
end detection and loop detection to enhance the authoring
tool.

Quantitative evaluation of the authoring tool As shown in
Tables 1,2,3,4, Subjects a-e were in Group A and Subjects
f-j were in Group B. Table 1 shows the description time. We
did an analysis of variance to determine whether there is a
significant difference in the description time between the two
groups. However there was not a significant difference at the
5% level of significance.

Table 2 shows whether or not the subject described the nav-
igation rules without an error, and the error ratio. Table 3
shows whether or not the navigation rule that the subject de-
scribed included dead ends, and the dead end ratio. Table 4
shows whether or not the navigation rules (only for Tasks 5
and 6) that the subjects described included loop errors, and
the loop error ratio. In each table, a circle shows that there is
no error, there is no dead end, or there is no loop error. An
X shows that there are errors, dead ends, or loop errors. Al-
though the value of the error ratio, dead end ratio, and loop
error ratio assumes discrete values because the number of
tasks is small, we did an analysis of variance on these three
parameters to get an idea of the effectiveness of the system.
The result is that there is a significant difference between the
two groups at the 5% level of significance in the above three
parameters.

Figure 5 is a graph of the relationship between the description
time and the error ratio. As regards the description time and
the error ratio, the correlation coefficient of the group A is
-0.67 and the correlation coefficient of the group B is -0.89.
Although we cannot guarantee high and negative correlation,
we see an apparent relationship that as the description time
becomes longer the error ratio gets smaller.

The overall results, showing significant differences in the er-
ror ratio, dead end ratio, and loop error ratio, indicate that
the authoring tool reduced the numbers of navigation errors.
There is not a significant difference in the description time.
We think the reason is that the Group B subjects tended to
rely on the authoring tool to check the described navigation
rule. However if the subject uses the authoring tool, the dead
end and loop detection shows whether or not there is an er-
ror, and they repeatedly modified the navigation rules and
checked them. The reason that there is not a significant dif-
ference in the overall description time is that (1) there are
individual differences in the description times, (2) the au-
thoring tool reduced the time to check the described navi-
gation rule, and (3) the Group B subjects spent time repeat-
edly modifying and checking the navigation rules, thereby
offsetting the time saved during each check. However we
can recognize the effectiveness of the authoring tool also on
the description time, because of the fact that the description
time tends to get longer as the error ratio becomes smaller

Table 1: Description Time.
Subject Time(min) Subject Time(min)

a 59.8 f 58.4

b 43.2 g 69.2

c 61.3 h 45.7

d 52.5 i 50.0

e 52.5 j 71.4

Table 2: Error in the navigation rule.
Task Error

Subject 1 2 3 4 5 6 ratio(%)

a O O O O X O 17

b O O O O X X 33

c O X O O X O 33

d O X O O X O 33

e O O O O X O 17

f O O O O O O 0

g O O O O O O 0

h O O O O X O 17

i O X O O O O 17

j O O O O O O 0

and the error ratio becomes smaller when the subjects use
the authoring tool. This again shows that the authoring tool
reduced the information providers’ efforts in describing the
navigation rules.

Discussion
We implemented an adaptive hypermedia system for infor-
mation providers to properly guide users in hyperspace. Our
system uses link hiding as the primary adaptation method and
prevents users from selecting links that information providers
do not make available. Our evaluation shows that adding a
supporting tool that checks the execution of link hiding for
this function enables information providers to direct users
more reliably.

Because of the problems information providers have in de-
scribing the navigation rules, we focused on the following:

1. The effort required to express the navigation according to the
format of the navigation rules.

2. The effort required to check the execution of the described
navigation rules.

For the reduction of these efforts, the following devices and
functions are effective:

1. Simple description of the navigation rules, which does not re-
quire programming knowledge for the information providers.

2. Providing an authoring tool, which detects errors in the de-
scribed navigation rules.

The above devices and functions are effective for the reduc-
tion of the information providers’ effort in describing the

Table 3: Deadend in the navigation rule.
Task Dead End

Subject 1 2 3 4 5 6 ratio(%)

a O O O O X O 17

b O O O O X X 33

c O X O O X O 33

d O O O O X O 17

e O O O O X O 17

f O O O O O O 0

g O O O O O O 0

h O O O O X O 17

i O O O O O O 0

j O O O O O O 0

Table 4: Loop errors.
Task Loop error

Subject 5 6 ratio(%)

a X O 50

b X X 100

c X O 50

d X O 50

e X O 50

f O O 0

g O O 0

h X O 50

i O O 0

j O O 0

navigation rules and reducing the errors in the described nav-
igation rules for general hypermedia systems where informa-
tion providers want to guide users.

CONCLUSIONS
This paper proposed an adaptive hypermedia system that re-
duces information providers’ efforts to describe the naviga-
tion rules and leads to fewer errors in the described naviga-
tion rules while guiding users accurately. This system uses
simple expressions for the navigation rules to reduce the in-
formation providers’ efforts. It also adapts the hyperspace
to the user by link hiding in order to achieve the desired
user paths. We also offer an authoring tool for this system,
which checks whether there are errors in the described navi-
gation rules, with the aim of further reducing the information
providers’ efforts to describe the navigation rules and avoid
errors in those rules.

The proposed system was implemented and evaluated quali-
tatively and quantitatively. In the qualitative evaluation, five
information providers freely described content and naviga-
tion rules and gave the experimenter their subjective opin-
ions. In the quantitative evaluation, ten information providers
described navigation rules for the same navigation tasks and
the experimenter measured the time required for describing
the navigation rules and the error ratio, which is the ratio of

40

30

20

10

0
7570656055504540

time(min)

Error ratio (%)
Description Time and Error Ratio

Without tool

With tool

Subject a

Subject b Subject cSubject d

Subject e

Subject f Subject g

Subject h Subject i

Subject j

Figure 5: Time for describing and error ratio

the navigation tasks with errors in relation to all navigation
tasks. The results of the experiments provide evidence sup-
porting the effectiveness of the system in the reduction of
information providers’ efforts and in minimizing navigation
errors. The proposed functions are effective for hypermedia
systems in which information providers want to guide users
properly.

Our future research will focus on an enhanced authoring tool
and an enhanced rule function.

REFERENCES
1. Brusilovsky, P. L.: Methods and Techniques of Adap-

tive Hypermedia, User Modeling and User-Adapted In-
teraction, Vol.6, No.2-3, (1996), pp.87-129.

2. Brusilovsky, P. L.: Intelligent Tutor, Environment and
Manual for Introductory Programming, Educational
and Training Technology International, Vol.29, No.1,
(1992), pp.26-34.

3. Brusilovsky, P. L., Eklund, J. and Schwarz E.: Web-
based Education for All: A Tool for Development
Adaptive Courseware, Computer Networks and ISDN
Systems (Proc. of the 7th International World Wide
Web Conference), Vol.30, (1998), pp.291-300.

4. Boyle, C. and Encarnacion, A. O.: MetaDoc: An Adap-
tive Hypertext Reading System, User Modeling and
User-Adapted Interaction, Vol.4, No.1, (1994), pp.1-19.

5. De Bra, P. and Calvi, L.: AHA: a Generic
Adaptive Hypermedia System, Proc. of 2nd Work-
shop on Adaptive Hypertext and Hypermedia (1998),
http://wwwis.win.tue.nl/ah98/Proceedings.html.

6. De Bra, P., Houben, G. and Wu, H.: AHAM: A
Dexter-based Reference Model for Adaptive Hyperme-
dia, Proc. of Hypertext’99 (1999), pp.147-156.

7. Chittaro, L. and Ranon, R.: Adding Adaptive Features
to Virtual Reality Interfaces for E-Commerce, Interna-

tional Conference on Adaptive Hypermedia and Adap-
tive Web-based Systems, LNCS 1892 (2000), pp. 86-
97.

8. Gonschorek, M. and Herzog, C.: Using Hypertext for
an Adaptive Helpsystem in an Intelligent Tutoring Sys-
tem, Proc. of AI-ED’95, 7th World Conference on Ar-
tificial Intelligence in Education (1995), pp.274-281.

9. Hohl,H. et al.: Hypadapter: An Adaptive Hypertext
System for Exploratory Learning and Programming,
User Modeling and User-Adapted Interaction, Vol.6,
No.2-3, (1996), pp.131-156.

10. Perez, T. et al.: HyperTutor: From Hypermedia to Intel-
ligent Adaptive Hypermedia, ED-MEDIA’95 - World
Conference on Educational Multimedia and Hyperme-
dia (1995), pp.529-534.

11. Rety, J.: Structure Analysis for Hypertext with Condi-
tional Linkage, Proc. of Hypertext’99 (1999), pp.135-
136.

12. Rich, E.: Users Are Individuals: Individualizing User
Models, International Journal of Man-Machine Studies,
Vol.18, (1983), pp.199-214.

13. Wu, H, De Bra, P., Aerts, A. and Houben, G.: Adapta-
tion Control in Adaptive Hypermedia Systems, Proc. of
International Conference on Adaptive Hypermedia and
Adaptive Web-based Systems, LNCS 1892 (2000), pp.
250-259.

14. Yanagisawa, A. and Matsumoto, H.: Internet Value
Chain Marketing, (1998), SCC

APPENDIX
Data for Experiment
We created educational content for learning computer sci-
ence. As regards the size of content, there are 103 nodes
with 177 links. Table 5 shows the meaning of the user pa-
rameters. Table 6 shows the meanings of the classes. Table
7 shows the contents of the task, the number of nodes where
navigation rules should be defined, and the types of the rules.
The abbreviations ”nu”, ”gu”, and ”np” in Table 7 stand for
the node user rules, the general user rules, and the node path
rules.

Table 5: User parameters for the experiments.
User Meaning

para-

meter

1 The degree of interest in the area of networks

2 The degree of interest in the area of system development

3 The degree of interest in the area of hardware

4 The degree of interest in the area of operating systems

5 The degree of knowledge in the area of networks

6 The degree of knowledge in the area of system development

7 The degree of knowledge in the area of hardware

8 The degree of knowledge in the area of operating systems

Table 6: Classes for the experiments.
Class Role

A Offering a question

B Offering a response when the user answers the question

correctly

C Offering a response when the user answers the question

incorrectly

D Offering an explanation

E Topic-related class (networks)

F Topic-related class (system development)

G Topic-related class (hardware)

H Topic-related class (operating systems)

Table 7: Tasks in the experiments.
Task Contents No. Rule

of type

node

1 Hide links to the teaching materials that the 1 gu

user is not interested in. This is based on the

degree of interest for the four areas.

2 Provide questions first, then provide explana- 6 nu

tions for the user whose degree of knowledge

is high. Provide explanations first, then pro-

vide questions for the user whose degree of

knowledge is low.

3 Provide three questions, then change the 2 np

contents of the explanation according to the

eight patterns that the users could answer.

4 Provide five questions, which are ordered 1 np

from basic to difficult. After the user ans-

wers all questions, provide the same ques-

tions again beginning with the first question

that the user answers incorrectly. If the user

answers all questions correctly he/she is fini-

shed studying. However the user is only

allowed to work on each question twice.

5 The user answers questions in three areas, 3 np

which are hard disk, CPU, and memory, in

this order. Each area provides two questions.

If the user answers even one question in an

area incorrectly, he/she has to answer the

same two questions again for the topic. If

the user answers both of the questions cor-

rectly, he/she goes forwards to the next area.

