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Abstract. Current subgroup discovery methods struggle to produce
good results for large real-life datasets with high dimensionality. Run
times can become high and dependencies between attributes are hard
to capture. We propose a method in which auto-encoding is applied for
dimensionality reduction before subgroup discovery is performed. In an
experimental study, we find that auto-encoding increases both the qual-
ity and coverage for our dataset with over 500 attributes. On the dataset
with over 250 attributes and the one with the most instances, the cov-
erage improves, while the quality remains similar. For smaller datasets,
quality and coverage remain similar or see a minor decrease. Additionally,
we greatly improve the run time for each dataset-algorithm combination;
for the datasets with over 250 and 500 attributes run times decrease
by a factor of on average 150 and 200, respectively. We conclude that
dimensionality reduction is a promising method for subgroup discovery
in datasets with many attributes and/or a high number of instances.

Keywords: Subgroup discovery + Auto-encoding - Dimensionality
reduction

1 Introduction

Subgroup Discovery (SD) is a data mining method used to discover interesting
relationships between objects in a dataset with respect to a specific target vari-
able. The SD outcome is typically represented as a set of rules called subgroups
[10]. SD methods are often used on real-world problems, such as the detection
and description of Coronary Heart Disease risk groups [8], fraud detection in
the healthcare domain [16] and identifying flight delay patterns [23]. Real-life
problems often involve datasets with high dimensionality. For many SD meth-
ods, handling such large datasets can be an issue. The most commonly used
method to address this problem is by applying sampling. However, this method
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has the downside of not taking dependencies and relationships between variables
into account which can result in important data loss for subgroup discovery. It
seems that no research is conducted on reducing the dimensionality of a dataset
via auto-encoding prior to applying subgroup discovery methods. Using auto-
encoding as a method to reduce the dimensionality of a dataset may solve the
issue of important data loss since this method is able to uncover latent low-
dimensional non-linear structures in the data [11], which allows it to minimize
the dimensionality reduction information loss. Therefore, this paper investigates
the effects of auto-encoding on the results of various existing SD methods.

1.1 Main Contribution

We propose an alternative method that enables the application of SD on larger
datasets. We show that preprocessing datasets by performing dimensionality
reduction using auto-encoders can improve the efficiency of SD, while maintain-
ing or improving subgroup quality and coverage of discovered subgroups. Run
times can be a few hundred times less for datasets with many attributes. At
the same time, we can increase the coverage and explore different regions in the
data for any algorithm if datasets are reasonably sized. We can do this while
achieving equivalent or even higher subgroup qualities, both on average and for
the best subgroup, depending on the dataset.

2 Related Work

2.1 Subgroup Discovery

Subgroup Discovery methods (see [10] for a survey) can be partitioned into three
groups. The first group of methods are extensions of classification algorithms,
such as EXPLORA [14], MIDOS [29], SD [8], and CN2-SD [18]. The second
group contains extensions of association algorithms, such as APRIORI-SD [13]
and Merge-SD [9]. The third group consists of evolutionary algorithms, such
as NMEEF-SD [3]. Herrera et al. [10] noticed that many of the above listed
subgroup discovery techniques have difficulties with real-world problems due
to high dimensionality of the datasets associated with such problems. Usually,
there are two solutions for data mining algorithms that do not perform well
under high dimensional datasets, namely reducing the data size without changing
the outcome radically or redesigning the algorithm so that it can handle huge
datasets. The most applied method to reduce the dimensionality of a dataset
is sampling, in which particular instances of a dataset are selected according to
certain criteria [10]. A downside of this technique is that this could lead to loss
of important knowledge for the SD task when not considering dependencies and
relationships between variables. Therefore, when reducing the dimensionality of
a dataset, it must be ensured that no important data is lost which is necessary
for the extraction of important subgroups [10].
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2.2 Dimensionality Reduction

The goal of dimensionality reduction is to produce a compact low-dimensional
encoding of a given high-dimensional dataset. Principal Component Analysis
(PCA) [28] aims to find a linear subspace of a dimension lower than the dimen-
sion of the original dataset, such that the data points lie mainly on this linear
subspace, and thus maintain most of the variability of the data [25,27]. Lin-
ear Discriminant Analysis (LDA) [24] is a classifier that is used to find a linear
combination of features, which separates a number of classes of data. The main
idea is to ensure that the samples after projection have maximum between-
cluster-distance and minimum within-cluster-distance in the new subspace [27].
Isomap [25] performs multidimensional scaling in the geodesic space of the non-
linear data manifold, rather than in the input space. Lastly, auto-encoders [27]
reduce dimensionality very well while maintaining more information than the
four aforementioned dimensionality reduction methods for most datasets. Addi-
tionally, auto-encoders are better capable of detecting repetitive structures than
the alternative methods.

3 Preliminaries

A dataset D consists of a set of individuals I and attributes A, such that D =
(I,A). A subgroup description, also called a complex pattern P, is a set of
selectors, also called basic patterns [2]. For a nominal attribute, a selector is
a Boolean function that is true if a; € A = v; for the individual, and false
otherwise. For numeric attributes, the value of the selector is set to true for
an individual if the attribute value for that individual is in the interval [min; :
max;]|, thus if a; € [min; : max;], and false otherwise. The set of all basic patterns
in the dataset is denoted by X'. The subgroup description P is then defined by
a conjunction of basic patterns: P(i) = sel; A... Asel,, sel,, € ¥, m = j,...,n for
individual ¢ € I. This pattern can then be interpreted as a rule for a subgroup
Sp = {i € I|P(i) = true} [2]. A subgroup Sp is thus defined as the set of all
individuals ¢ € I that satisfy the rule based on the conjunction in P, consisting
of a set of selectors.

Subgroup Discovery is a technique for descriptive and exploratory data min-
ing. The goal of SD is to identify subsets of a given dataset that display interest-
ing behaviour [2]. The interestingness of behaviour is defined as “distributional
unusualness with respect to a certain property of interest” [29]. To what extent
behaviour is interesting, is evaluated with respect to certain interestingness cri-
teria, which are formalized by a quality function. Using this quality function,
a subgroup discovery algorithm identifies a set of interesting subgroups. In this
paper, we employ Weighted Relative Accuracy (WRAcc) [17] as quality function.
The WRACcc of a subgroup is defined in the following way [20]:

|Sp|
1]

WRAce(Sp) = * (psp (target = 1) — pr(target = 1))
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The task of Subgroup Discovery in this paper now becomes equivalent to the
formal problem definition in [6, Problem Statement 1], with 2 = D, D is as
described earlier in this section, ¢ = WRAcc, ¢ = 100, and C = @.

3.1 Auto-Encoding

An auto-encoder is a three-layered neural network, consisting of an encoding
layer, an encoded layer, and a decoding layer. The encoding layer takes an indi-
vidual i € R? as input and reduces it to an item h € Rdl, where typically d’ < d.
This layer is subsequently decoded to produce a reconstructed version i’ € R? of
the individual. The objective of the auto-encoder is then to minimize the recon-
struction error J(i,') = $|li — z’||§ [27], such that this reconstructed version is
as close to the original data entry as possible. Given a dataset D, such a net-
work can be trained using backpropagation of the so-called mean squared error,
which is the average of this loss over the data in D. This training occurs for
a certain number of epochs, which are passes through the dataset. To prevent
overfitting, the training can stop earlier once the test error has not improved
for a certain number of steps. Once the auto-encoder has completed training, its
encoded layer can be used as a dimension-reduced version of the input data.

The structure of auto-encoders can vary with regard to the number of hidden
layers, size of the hidden layers, and activation function used in its neurons.
Deep auto-encoders tend to perform better than shallower ones with only a
single hidden layer [11], although this advantage disappears if the number of
free parameters becomes too big as a result [11]. The neurons in the layers can
have several activation functions. Often the Leaky ReLU [21] activation function
is used, due to strong performance and immunity to the dying neuron problem.
The Leaky ReLU activation function is given by:

f(z):{aw ifz <0

T ifxz>0

Here, « is a typically small coefficient that is chosen by the user.

4 Methodology

We propose a method of combining auto-encoding with SD. Our original dataset
D may contain attributes of any type: binary, nominal, and numeric. Auto-
encoding expects input data that is real-valued, and we bridge that gap by one-
hot encoding all non-numeric attributes of the original dataset. This results in
a new dataset D’ whose individuals take value in R?, and whose dimensionality
is larger than the number of attributes in the original dataset: d > |A|. Sub-
sequently, an auto-encoder neural network is trained on this dataset D’ using
backpropagation on the mean squared error. This auto-encoder has d’ encoded
features, where d’ is chosen in such a way that it provides a balance between
a small number of features and a high representativeness of the features. Once
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this auto-encoder is developed, every individual ¢ € D’ is transformed to an item
heRY. Using this set of transformed items and associated set of attributes, we
can perform SD as described in Sect. 3, directly using this new data in existing
SD algorithms.

4.1 Experimental Setup

To conduct our analysis on the effect of auto-encoding on the performance of SD,
we perform multiple experiments'. These experiments are conducted using sev-
eral SD algorithms with various datasets (see Sect. 4.3). We test the algorithms
both with and without auto-encoding and compare the results. The employed
SD algorithms are beam search [6], APRIORI-SD [13], Best First Search (BFS)
[31], and Depth First Search (DFS) [20]. These are implemented in Python, using
the adapted code from [5] for the beam search algorithm and a modified version
of the Python package pysubgroup [20] for the other algorithms.

For all datasets, the auto-encoder is implemented using TensorFlow 2.0 [1]
in Python. The number of encoded features d’ of the auto-encoder is selected
individually for each dataset. Here, we choose a number that provides a good
balance between the number of features and the error function. The intuition
here is similar to that of the elbow rule (or critical point rule) in clustering [26].
The selected values for d’ are reported in Table 1.

During the tuning of the number of features, the number of epochs and
patience for early stopping are set to 100 and 10, respectively. We set the number
of hidden layers before and after the encoded layer to 4 and the number of
neurons per layer to 512, 256, 128, and 64 (reversed in the decoder). For the
neurons, we use the Leaky ReLU activation function with a = 0.3, following the
findings of [30].

We evaluate the performance of auto-encoder based SD along three axes.
Firstly, to represent subgroup quality, we report the mean and maximum WRAcc
for the 100 best-found subgroups. Secondly, to represent dataset coverage, we
determine the number of items that are present in at least one subgroup, as
well as the number of distinctive items? between vanilla and auto-encoder based
SD: added items are those present in at least one subgroup found through auto-
encoder based SD but in none of the subgroups found through vanilla SD, and
the reverse are lost items. Thirdly, to represent subgroup diversity, we check the
distribution of the number of subgroups in which each item is present.

! cf. Github repository at https://github.com/JFvdH/Efficient-SD-through- AE.

2 Notice that, for making these distinctive comparisons, we must compare presence
or absence of individuals in subgroups in the original data space, with presence or
absence of encoded items in subgroups in the encoded space. Naively, this may seem
nontrivial, but notice that the number of individuals and the number of items is
identical: when encoding, the representation of each individual is changed and its
number of attributes may change, but each individual has one unique counterpart
item in the encoded space. This enables identification of added and lost items across
the divide between original data space and encoded space.
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Fig. 1. Effect of Diverse Subgroup Set Discovery (DSSD) on distributions of item
occurrence in subgroups.

4.2 Algorithms and Settings

The SD algorithms that we analyse are beam search [6], APRIORI-SD [13], Best
First Search (BFS) [31], and Depth First Search (DFS) [20]. All algorithms are
set to find subgroups with a depth of 2, meaning that they have to find sub-
groups using patterns of at most 2 selectors. All subgroups are parameterized
to report the best 100 subgroups found, evaluated by WRAcc. For beam search,
additional parameters require configuration: the beam width was set to (a gen-
erous) 100, the minimum support for a subgroup to be considered was set to 2%
of the dataset, and numeric attributes were treated with the 1bca discretization
method from [22] with granularity 5.

We adapt the SD algorithms to incorporate the lessons learned from Diverse
Subgroup Set Discovery (DSSD) [19]. In beam search, a candidate subgroup is
discarded unless its quality differs from the quality of its seed subgroup. For the
other algorithms, the same principle is implemented in a slightly different way: a
candidate is now discarded if its quality is (approximately) equal to any current
candidate’s quality and all but 1 selectors are identical. Figure 1 illustrates the
effect of this DSSD strategy on the distribution of the number of subgroups
encompassing items: variety increases under DSSD.

4.3 Data

The six datasets used for this research are extracted from the UCI Machine
Learning Repository. Those datasets are selected since they all have differ-
ent compositions such that a variety of dataset characteristics are tested. An
overview of the number of rows, number of attributes, and type of attributes is
presented in Table 1.

For the Soybean dataset, all rows with missing data are dropped. This means
that N decreases from 307 to 266. In the Arrhythmia dataset, one attribute
contained 376 missing values. Instead of removing the majority of our rows, we
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Table 1. Metadata (before preprocessing) of datasets used for the experiment.

Dataset N #Attributes d
Discrete | Numerical | Total
Tonosphere 351 0 34 34 |5
Soybean(-large) | 307 |35 0 35 |9
Adult 48842 | 8 6 14 |7
Mushroom 8124 |22 0 22 |5
Arrhythmia 452 | 73 206 279 |8
Indoor 21048 | 2 520 522 |9

chose to drop this attribute, resulting in a remaining 205 numerical attributes in
this dataset. After this attribute drop, 32 rows contain further missing values.
Those rows are dropped resulting in N = 420. The datasets Ionosphere, Adult,
and Mushroom did not contain any missing values, so N remains 351, 48842,
and 8124, respectively. Lastly, in the Indoor dataset, multiple target variables
are present. We select BuildingID as the target of our SD run and drop all other
target variables. No rows are dropped, so N remains 21048.

WRAcc evaluation requires one target class per dataset to be designated
as the positive class. For Ionosphere we select “good”, for Mushroom we select
poisonous mushrooms, for Adult we select persons making over 50K a year, for
Arrhythmia we select having any heart disease, for Soybean we select soybeans
having any “spot” classification, and for Indoor dataset we select all objects
having BuildingID 2.

Lastly, to ensure proper training of the auto-encoder, the attributes in the
Adult and Arrhythmia datasets are standardized before auto-encoding. These
datasets contain attribute values of significantly varying orders of magnitude.
If not standardized, training based on the mean square error becomes both
very unstable and skewed towards only those attributes with large values. This
leads to poor results of the encoder. Hence, all data entries are standardized by
subtracting the sample mean and dividing by the sample standard deviation of
the specific attribute.

5 Results

An overview of the results of the algorithms with and without auto-encoding can
be seen in Table 2. All auto-encoders had a small number of encoded features
compared to the original numbers of features. With this lower dimensionality,
depending on the dataset and algorithm, slightly varying results are obtained.
Firstly, in Table 2a we find that the coverage of the discovered subgroups
using beam search is increased for every dataset except for the Mushroom dataset
(where it stays approximately the same). This observation will be further dis-
cussed in Sect. 6. From the inspection of the added and lost items, we see that,



334 J. F. van der Haar et al.

Table 2. Comparative performance of Subgroup Discovery with and without auto-
encoding, in terms of runtime, quality, and coverage.

(a) Beam search, using min_sgsize = 2%, n_chunks = 5, beam_width = 100.

Vanilla Auto-encoded Items
) Run time (s) ~ WRAcc . Run time (s) WRAcc o )
Dataset (Algorithm) Max  Mean Coverage Tun. Enc. Alg. Max  Mean Coverage Added Lost
Ionosphere 396 0.141 0.132 0.858 50 5 41 0.097 0.087 0.883 33 (0.094) 24 (0.068)
Soybean 221 0.250 0.248 0.508 61 4 90 0.166 0.143 0.662 48 (0.180) 7 (0.026)
Adult 945 0.066 0.065 0.458 4810 650 180 0.064 0.062 0.565 7740 (0.158) 2528 (0.052)
Mushroom 309 0.242  0.226 0.566 1184 133 46 0.163  0.153 0.553 993 (0.122) 1096 (0.135)
Arrhythmia 7800 0.085 0.082 0.450 83 6 91 0.084 0.073 0.540 106 (0.252) 8 (0.162)
Indoor 47644 0.117 0.114 0.378 4980 650 187 0.165 0.149 0.463 2972 (0.141) 1191 (0.057)
(b) Best-first search.
Vanilla Auto-encoded Items
I Run time (s)  WRAcc . Run time (s) WRAce . Ny .
Dataset (Algorithm) Max  Mean Coverage Tun. Enc. Alg. Max  Mean Coverage Added Lost
Tonosphere 0.9 0.069 0.043 0.997 50 5 0.1 0.089 0.021 0.972 1 (0.003) 0 (0.028)
Soybean 020241 0162 0944 61 4  0.10.115 0033 0.910 3(0.049) 22 (0.083)
Adult 2.7.0.069 0.030 0.853 4810 321 0.50.053 0.011 0.936 5465 (0.112) 14: 52 (0.029)
Mushroom 0.9 0.182 0.093 1.000 1184 133 0.10.113 0.021 0.936 (U 000) 521 (0.064)
Arrhythmia 46.9 0.066 0.058 0.705 83 6 0.2 0.058 0.017 0.874 (0.217) 20 (0.048)
Indoor 108.7 0.107 0.106 0.400 4980 650 0.4 0.109 0.032 0.900 10530 (0 500) 3 (0.000)
(¢) Depth-first search.
Vanilla Auto-encoded Items
o Run time (s) ~ WRAcc \ Run time (s) WRAce §
Dataset (Algorithm) Max  Mean Coverage Tun. Enc. Alg. Max  Mean Coverage Added Lost
Ionosphere 1.0 0.069 0.043 0.989 50 5 0.1 0.043 0.015 0.949 15 (0.043) 1 (0.002)
Soybean 0.30.241 0.162 0.944 61 4 0.1 0.087 0.027 0.944 15 (0.056) 15 (0.056)
Adult 5.05 0.063 0.029 0.853 4810 321 0.50.054 0.011 0.936 5463 (0.112) 1432 (0.029)
Mushroom 1.40.182 0.093 1.000 1184 133 0.1 0.120 0.022 0.936 0 (0.000) 522 (0.064)
Arrhythmia 46.6 0.086 0.062 0.681 83 6 0.2 0.083 0.022 0.855 97 (0.231) 24 (0.057)
Indoor 117.1 0.109 0.107 0.350 4980 650 0.50.134 0.039 0.909 11752 (0.558) 0 (0.000)
(d) APRIORI-SD.
Vanilla Auto-encoded Ttems
. Run time (s)  WRAcc Run time (s) WRACcc §

Dataset (Algorithm) Max ~ Mean Coverage Tun. Enc. Alg. Max  Mean Coverage Added Lost
Tonosphere 1.1 0.074 0.046 0.997 50 5 0.3 0.086 0.022 0.972 1 (0.003) 10 (0.028)
Soybean 0.20.241 0.162 0.944 61 4 0.10.112 0.032 0.914 (0.049) 21 (0.079)
Adult 2.6 0.063 0.029 0.853 4810 321 0.6 0.055 0.011 0.936 5463 (0.112) 1432 (0.029)
Mushroom 0.4 0.182 0.093 1.000 1184 133 0.10.106 0.021 0.936 0 (0.000) 522 (0.064)
Arrhythmia 39.3 0.084 0.062 0.702 83 6 0.8 0.078 0.022 0.855 90 (0.214) 26 (0.061)
Indoor 94.8 0.129 0.122 0.290 4980 650 1.70.116 0.039 0.909 13016 (0.618) 0 (0.000)

besides increasing coverage, beam search with the auto-encoded data covers a
different region of the data for most datasets. Some items are newly included in
its 100 best subgroups and other items are now excluded. For the Adult dataset,
however, very few items are lost while many are added. Thus, here, auto-encoding
expands the coverage region.

In Tables 2b, 2c, and 2d, we find consistent effects on the coverage for
the other three algorithms. Increased coverage is only achieved for the Adult,
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Arrhythmia, and Indoor datasets: the larger ones in terms of items and/or
attributes. For the smaller datasets, the vanilla algorithms already achieve such
high coverage that auto-encoding can only match the coverage. The coverage of
the Adult data (relatively many items) is a few percentage points higher for all
three algorithms. Auto-encoding based SD manages to cover 15% points more
of the Arrhythmia data (relatively many attributes). Lastly, for the Indoor data
(relatively many attributes and items), the coverage is increased by at least 50%
points for BFS, DFS, and APRIORI-SD. For these algorithms, the number of
items added and lost for the bigger datasets show similarities with the numbers
for beam search. Namely, in the Adult and Arrhythmia data, a part of the items
is newly included after auto-encoding while another part is excluded. The find-
ings, therefore, cover different regions of the data. For the Indoor data, on the
other hand, many items are added to at least one subgroup while few to none are
lost for each algorithm. Hence, we find that auto-encoding increases the coverage
of all subgroup discovery algorithms significantly for data with a high number
of items and/or attributes. It includes different regions of the data or expands
the current regions. For smaller datasets, the coverage is approximately equal.

In terms of WRAcc quality of the found subgroups, again, a difference can
be seen between the three smaller and three larger datasets. Table 2a displays
that the maximum and mean WRAcc after auto-encoding are worse for Iono-
sphere, Soybean, and Mushroom when performing beam search. Oppositely, the
qualities for the bigger Adult and Arrhythmia datasets remained similar after
auto-encoding. The subgroups found on the Indoor dataset are substantially
better with auto-encoding than without. It is likely that due to the high num-
ber of numerical variables, the attributes that are present do not have enough
expressive power to form strong groups with a small number of selectors while
the encoded attributes do have this expressive power.

For the other algorithms, we find similar results in Tables 2b, 2¢, and 2d.
An important distinction, however, is that the mean WRAcc scores over the 100
subgroups after auto-encoding are generally lower for all datasets, indicating that
the number of high-quality subgroups is lower. From the maxima, though, we can
see that the performance with auto-encoding of the three big datasets is good,
again. For all three algorithms, the maximum WRAcc scores for the Adult and
Arrhythmia data are equivalent with and without auto-encoding. One exception
is APRIORI-SD, in which auto-encoding decreases the maximum WRAcc for
the Adult data. The maximum WRAcc score for the Indoor dataset is higher
with auto-encoding using BFS and DFS and only slightly lower for APRIORI-
SD. For the smaller Soybean and Mushroom datasets, again we find that the
maximum WRAcc scores decreases with auto-encoding for APRIORI-SD, DF'S,
and BFS. On the other hand, the subgroups of the Ionosphere dataset, which
has a reasonably high number of numerical features, have a higher maximum
WRAcc with auto-encoded features for BFS and APRIORI-SD algorithm.

Finally, run times of the algorithms itself on auto-encoded versions of each
dataset are improved across all of Table 2. For the Indoor dataset, the time is
reduced by a factor of over 250 for multiple algorithms. In Table 2a, we see that
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the beam search run time for the Arrhythmia data is decreased from more than
2 h to 91 s and for the Indoor dataset it is even decreased from over 13 h to just
3 min. Of course, this neglects tuning and training time of the auto-encoders: for
some combinations of dataset and algorithm this time is longer than the gained
algorithm run time. For the combination of Arrhythmia and Indoor with beam
search, we see that the gained time is bigger than the total model development
time.

6 Discussion

From the results, we can derive that feature reduction using auto-encoding can
help to improve subgroup discovery for datasets with many attributes and/or
instances. We found that, depending on the algorithm and dataset, the coverage,
quality, and run time can be improved by auto-encoding the data. For smaller
datasets with fewer attributes, this improvement is smaller. Here, the coverage
is often similar and the run time is shorter, but the quality of the subgroups
is generally lower. The method could still be used to explore different regions
within the data but, in general, the added value is low.

For the datasets that do benefit from auto-encoding, we saw that for some
dataset-algorithm combinations, the model development time is higher than the
algorithm run time. However, for the largest two datasets in terms of attributes,
we already saw that the model development time is very small compared to the
run time of beam search without auto-encoding. This benefit will only become
more apparent for larger datasets. On top of that, tuning and training the auto-
encoder only has to occur once. Thus, in case multiple algorithms must be run,
this can all occur with the same encoded features. Similarly, if one has to inves-
tigate a similar dataset with new instances every once in a while (e.g. monthly
fraud detection investigation), the auto-encoder does not need to be re-trained
and the same model can still be used. Hence, in several scenarios, the model
development time is still not a deal-breaker if the initial development time is
longer than a one-time run of the model.

Another potential limitation of feature reduction using auto-encoding is the
decrease in interpretability. When creating patterns from selectors that include
the original attributes of the dataset, all rules can directly be read and inter-
preted. This allows for clear interpretation of the rules and one can find a logic
based on these rules. For encoded features, however, you do not know the mean-
ing of the attributes and therefore the developed rules are hard or impossible
to interpret. While this inevitable loss of interpretability will always be present,
this does not mean that the subgroups become unusable. In some scenarios, like
fraud detection, people will mainly be interested in the instances that are in a
subgroup. Then, the interpretation of the rules is less relevant. Besides, if you
would want to find an intuition behind the subgroups, you can still trace back
the instances in the subgroups and inspect their attribute values compared to the
general dataset. For example, Fig. 2 displays that the best subgroup found in the
Adult dataset has different proportions of education categories compared to the
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Fig. 2. Adult education category histogram for top subgroup and full dataset.

original dataset. From this, we can clearly see that the subgroup only contains
persons with higher education levels. This, intuitively, makes sense when looking
for people with a high income. Hence, we conclude that dimensionality reduction
in subgroup discovery could still prove to be useful for interpretation. In fact,
this expands the subgroup language expressibility: without auto-encoding, a sub-
group defined on education level will take the form of an equality constraint to a
single value or a set of values; with auto-encoding, a subgroup can be expressed
by the skewed orange histogram of education level values.

7 Conclusions

Dimensionality reduction through auto-encoding can improve subgroup discov-
ery (SD) for large datasets. Multiple SD algorithms find subgroups with higher
or equivalent quality and better coverage for datasets with a high number of
attributes and/or instances when auto-encoding is performed beforehand. On
Indoor, the dataset with the largest number of attributes within our experi-
ments, pre-processing through auto-encoding doubles the coverage reached by
the BFS, DFS, and APRIORI-SD algorithms (cf. Table 2). With auto-encoding,
the beam search algorithm finds subgroups with improved WRAcc quality.

In addition to improved coverage and subgroup quality, the run times of the
algorithms are improved greatly. Across Table 2, run times of the algorithms
decreased substantially for each algorithm-dataset combination. For datasets
with many attributes, we found a decrease in run time of a factor of more than
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100. This can have a great impact when handling real-life datasets. For beam
search on the Indoor dataset, which has 21 048 instances, the run time decreased
from over 13 h to just 3 min while improving coverage and quality. In practice, the
number of instances can become even larger leading to an even bigger difference
in run times. To achieve this improved run time, the auto-encoder first has to be
trained which also takes time. For larger datasets, we found that the decrease in
algorithm run time outweighs the model development time.

The increased performance of auto-encoded subgroup discovery comes at
the cost of a decrease in interpretability. As the example of Fig. 2 illustrates,
intuition can still be derived from the items that are within the subgroup, and
the subgroup language becomes more expressive.

In short, we can conclude that using auto-encoding before subgroup discovery
is a promising method that can increase the quality, coverage, and run times for
subgroup discovery when datasets are large with many attributes.

Future research naturally emerges along two competing axes. On the one
hand, we would want to investigate whether we can recover the lost interpretabil-
ity of subgroups while achieving similar results, by employing interpretability-
preserving dimensionality reduction techniques. Straightforward candidates are
Principal Component Analysis with constraints on homogeneity and sparsity [4],
and the Interpretable Kernel DR, algorithm [12]. On the other hand, we would
want to investigate whether the lost interpretability allows for better predictive
performance, in a LeGo setting [15]: exploiting found subgroups as extra fea-
tures for multi-label classifiers [7] and as dummy variables in regression models
[6, Sect. 8.1] has proven to work; we would want to investigate whether they
could be enhanced through auto-encoding.
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