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Wouter Duivesteijn(B), and Rianne Margaretha Schouten(B)

Eindhoven University of Technology, Eindhoven, the Netherlands
{r.f.a.verhaegh,j.j.e.kiezebrink,f.nusteling,a.w.a.rio,

m.b.bendicsek}@student.tue.nl, {w.duivesteijn,r.m.schouten}@tue.nl

Abstract. Exceptional Preferences Mining (EPM) combines the
research fields of Preference Learning and Exceptional Model Mining.
It is a local pattern mining task, where we try to find coherent sub-
groups of the dataset featuring unusual preferences between a fixed set
of labels. We introduce a new quality measure for Exceptional Prefer-
ences Mining, inspired by concepts from Clustering. On top of that, we
draw conclusions on two design choices that must necessarily be made
whenever one defines a quality measure for any version of Exceptional
Model Mining: on the one hand, exceptional behavior is easily (spuri-
ously) found in tiny subgroups, so what is the best way to compensate
for that; on the other hand, when gauging exceptionality of a subgroup’s
behavior, what does one use as reference for the normal behavior? We
find that the choice of correction factor not only influences the subgroup
size but it also effects the presumed exceptionality of found subgroups.
The entropy function allows for detecting exceptional subgroups of a
meaningful size, both when a candidate subgroup is evaluated against
its complement and against the entire dataset.

Keywords: Exceptional preferences mining · Label ranking ·
Exceptional model mining · Preference learning · Pattern mining

1 Introduction

Exceptional Preferences Mining (EPM) [15,16] combines the two research fields
of Preference Learning (PL) [5] and Exceptional Model Mining (EMM) [4,12].
In PL, rather than predicting the relevance of individual labels for records of the
dataset, the focus lies on learning whether a record of the dataset prefers a label
over another. Hence, PL is mostly concerned with analyzing how labels relate
to each other, rather than the individual expression of a single label. A subfield
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of PL is Label Ranking (LR) [2,17], where one tries to learn a preference order
(ranking) on a set of labels. This is the part of PL that is of specific concern
to EPM. The other research field, EMM, seeks interesting subgroups of the
dataset. A subgroup is interesting if it satisfies two properties. On the one hand,
subgroups must be interpretable: we must be able to define them in terms of
few conditions on attributes of the dataset, so that we can understand and build
real-life policies on them. On the other hand, subgroups must be exceptional : a
few columns of the dataset are split off to form the target space, over which we
build a model, and subgroups are interesting if their behavior in this target space
is unusual. For instance, when analyzing sequential data in target space, Markov
chains can capture behavior in a subgroup, and one could assess exceptionality
of Markov model parameters to gauge the quality of a subgroup [18]. Within
EPM, the exceptionality of a label ranking becomes the target concept of an
EMM run: we find subgroups displaying unusual rankings of a set of labels.

Existing EPM quality measures [15,16] gauge exceptionality of the label rank-
ing within a subgroup on three separate levels of granularity (discussed in more
detail in Sect. 3), but they all share one trait: they only assess whether records of
the subgroup behave exceptionally, but not whether there is consistency behind
the measured exceptionalities. These measures neglect that exceptionality of
behavior might be achieved by lumping together disparate, heterogeneous kinds
of behavior (cf. [1] for a similar argument in Subgroup Discovery, correcting
for dispersion). In this paper, we propose a quality measure for EPM that not
only captures exceptional behavior, but additionally encourages subgroups to
have homogeneous target distributions. More specifically, we propose a quality
measure for EPM based on the principles of clustering, where one optimizes
for low within-cluster and high between-cluster distance. Comparably, our pro-
posed quality measure assigns a high quality value to subgroups with preference
relations that are dissimilar compared to records outside the subgroup but simul-
taneously very similar across records inside the subgroup.

When developing a quality measure for EMM (and hence also for EPM), two
design choices must be made. On the one hand, exceptional behavior is easily
(spuriously) found in tiny subgroups, so one must incorporate a component in
the quality measure to promote non-tiny subgroups. Typical solutions are using
the entropy of the subgroup/complement split, the size of the subgroup, or the
square root thereof. On the other hand, exceptional behavior cannot exist in a
vacuum: behavior can only be exceptional w.r.t. a reference behavior. Typical
choices are using the behavior on the entire dataset as normal behavior, or using
the behavior on the subgroup’s complement as reference. Crucially, for both these
design choices, very little evidence exists on what the right choice would be. In
this paper, we show that the choice of correction factor not only influences the
subgroup size but it also effects the presumed exceptionality of found subgroups,
and we further demonstrate differences in outcomes under different reference
behaviors in the context of EPM.
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1.1 Main Contributions

The main contributions of this paper are:

1. a new quality measure for EPM that allows for the finding of exceptional and
coherent subgroups in both descriptive and target space;

2. an exploration of the effect of subgroup size correction functions on the excep-
tionality of the found subgroups;

3. a demonstration of how outcomes differ depending on whether a subgroup is
evaluated against the global model or against its complement.

2 Preliminaries

Exceptional Preferences Mining (EPM) [15,16] is a mix of Preference Learning
(PL) [5] on the one hand and Exceptional Model Mining (EMM) [4,12] on the
other hand. It combines the task of “learning to rank” [5, p. 3] with the task of
identifying subgroups in a dataset that behave exceptionally. Specifically, EPM
focuses on Label Ranking (LR) [2,17], a type of problem in PL that aims to map
instances to rankings over a predefined set of labels, or classes. One can consider
LR to be a variant of the conventional classification problem, but instead of
assigning a case to a specific class, LR aims to assign a complete order of labels.

Assume a dataset Ω, which is a bag of N records r ∈ Ω of the form

r = (a1, . . . , ak, t1, . . . , t�)

where k and � are positive integers. Target attributes t1, . . . , t� contain values
associated with � unique labels or classes from the set L = {λ1, . . . , λ�}. Thus,
t1 contains values associated with label λ1, t2 contains values associated with
label λ2, etcetera. The exact meaning of the values depends on the application
domain. For instance, in a classification problem, tv can be the probability that
a record r belongs to class λv ∈ L. Alternatively, in Sect. 6 of this paper, we
analyze the Dutch parliament elections in 2021 and consider record r ∈ Ω to
be a municipality; attributes t1, . . . , t� contain the number of votes for � distinct
political parties.

2.1 Order Relations

We are interested in the ordering of the political parties by the number of votes.
The idea is to construct an ordering of the associated labels such that label λv

precedes λw when tv > tw, v �= w and 1 ≤ v, w ≤ �. Here, we consider total
order relations � on L, which means that label λv cannot have the same position
as λw. In other words, the ordering is a ranking and λv � λw not only means
that λv precedes λw but also that it is preferred over λw. Depending on the
application, the user can decide what total order should be assigned to labels
with equal values. In the case of Dutch elections, political parties with an equal
number of votes will be ranked based on their position on the voting list.

Formally, a total order � is a permutation π of the set {1, 2, . . . , �} such that
π(v) is the position of label λv in the order. For instance, if we consider the total
order λ4 � λ1 � λ3 � λ2 for � = 4, π = (2, 4, 3, 1).
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Table 1. Example toy datasets: the shared descriptor space, and separate target spaces
for SD, EMM, and EPM.

Attribute name a1 a2 a3 a4 . . . ak

Meaning Name Legs Swims? Flies? . . . Fluffy?

r1 Cat 4 no no . . . a bit

r2 Fish 0 yes no . . . no

r3 Owl 2 no yes . . . no

r4 Sheep 4 no no . . . very yes

r5 Snail 0 no no . . . no

(a) Descriptor space

t1

Friendly

no

yes

no

yes

yes

(b) SD

t1 t2 . . . tm

Length Weight . . . Life span

46 4 500 . . . 15

10 227 . . . 12

41 1 585 . . . 8

1 500 95 000 . . . 11

2 6 . . . 6

(c) EMM

π(1) π(2) π(3)

Grass rank Bread rank Meat rank

2 3 1

2 1 3

2 3 1

1 2 3

1 2 3

(d) EPM (� = 3)

2.2 Local Pattern Mining Methods: SD, EMM, and EPM

In the setting of both LR and EPM, preferences on L are associated with par-
ticular (groups of) dataset records through a set of features or attributes. In
EMM and EPM terms, these features are descriptive attributes, or descriptors.
Attributes a1, . . . , ak are these descriptors. The task of Local Pattern Mining
methods [7,13] is to find subgroups of the dataset, defined as a conjunction of
conditions on a few descriptors. Subgroup Discovery (SD) [8,10,20] seeks sub-
groups displaying an unusual distribution of a single target attribute, Excep-
tional Model Mining (EMM) [4,12] seeks subgroups displaying an unusual inter-
action between multiple target attributes, and Exceptional Preferences Mining
(EPM) [15,16] seeks subgroups where this interaction is exceptional preference
relations. Hence, EMM can be seen as the multitarget generalization of SD, and
EPM can be seen as a specific instantiation of the generic EMM framework.

Table 1 displays a toy dataset of some animals in a zoo. SD, EMM, and EPM
all share the descriptor space of Table 1a; any target space from Tables 1b, c,
and d can be appended. Combining Tables 1a and b, SD would find that the
subgroup “flies? = no” has a 75% share of “friendly = yes”, while this share
is 60% in the overall population. Combining Tables 1a and c, EMM would find
subgroups with an unusual interaction between the m targets (for example,
exceptional regression coefficients of length and weight while predicting life span,
when using the EMM model class from [3]). Combining Tables 1a and d, EPM
would find that the subgroup “Legs ≤ 1” always ranks meat last.
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2.3 Definitions

The task of EPM is to identify subgroups in the dataset with exceptional pref-
erences. The subgroups are defined by a description over the collective domain
of descriptive attributes. Formally, a description is a function D : A �→ {0, 1},
and a record ri is covered by description D if and only if D(ai

1, ..., a
i
k) = 1.

Definition 1. The subgroup corresponding to a description D is the bag of
records SD ∈ Ω that D covers: SD = {ri ∈ Ω | D(ai

1, . . . , a
i
k) = 1}.

We denote the number of records in a subgroup S with n. Every subgroup has
a complement SC = Ω \ S which contains all nC = N − n records not in
S. Whether a subgroup has exceptional preferences is evaluated with a quality
measure (QM):

Definition 2. Given a description language D governing which subgroups can
be formulated on a given dataset, a quality measure is a function ϕ : D �→ R.

The goal is to find the top-q subgroups with the highest quality value. It is
practically impossible to investigate all candidate subgroups exhaustively since
the number of candidates scales exponentially with the number of descriptive
attributes. Therefore, we perform a heuristically guided search called beam
search. We will further discuss beam search in Sect. 4.1 while discussing the
time complexity of our approach.

3 Related Work

Local pattern mining methods have been used to understand preference relations.
For instance, the Olympic ranking of countries has been studied [14] with SD.
Casting German federal Bundestag election vote shares (and vote share changes
between subsequent elections) within regions as preference relations, a tradi-
tional SD analysis can be performed by averaging across the � parties [6]. Instead,
we are interested in finding subgroups with an unusual interaction between � tar-
get attributes (and therefore consider our approach to be EMM).

Existing EPM QMs [15,16] are based on preference matrices (PM). A PM
∈ {−1, 0, 1}�×� is a square matrix that for each pair of labels λv, λw in a
ranking π evaluates whether they precede (1) or succeed (−1) each other
(∀v, w ∈ {1, . . . , �}). PMs of individual records can be averaged, which allows for
the comparison of matrix MD, the PM for the entire dataset, with MS , the PM
for the subgroup. Denoting the difference between matrices MD and MS with
LS , [15,16] propose three quality measures, for exceptionality on three distinct
levels of behavioral granularity:
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ϕnorm =
√

n/N ·
√√√√

�∑

v=1

�∑

w=1

LS(v, w)2 (1)

ϕlabelwise =
√

n/N · max
v=1,...,�

1
(� − 1)

�∑

w=1

LS(v, w) (2)

ϕpairwise =
√

n/N · max
v,w=1,...,�

LS(v, w) (3)

The first QM, ϕnorm, takes the Frobenius norm of LS to search for preference
deviations that occur spread out across the entire difference matrix. Zooming
in, ϕlabelwise evaluates whether there is one particular label λv that ranks sub-
stantially different in the subgroup, ignoring interactions between other labels.
Zooming in even further, ϕpairwise studies pairwise preferences [9], evaluating
whether any pair of labels interacts unusually in the subgroup. All three QMs
compare the PM of the subgroup with the PM of the entire dataset, and share
the choice for subgroup size correction factor:

ξsqrt =
√

n/N. (4)

In developing our quality measure we will borrow principles from clustering.
EMM is a local pattern mining technique whereas clustering is a global analysis
task, partitioning all records into homogeneous clusters. In EMM, subgroups
have an interpretable description, and records may be assigned to any number
of subgroups. Methods on the crossroads of local and global pattern mining
have been proposed, such as Predictive Clustering Rules (PCR) [21], SD with a
classification rule learning algorithm (CN2-SD) [11], Cluster Grouping (CG) [22]
and Multi-Response Subgroup Discovery (MR-SD) [19]. Although our quality
measure is inspired by principles in clustering, our method is a purely local one.

4 Proposed Method: A Clustering-Based Quality
Measure

We propose to perform EPM using the following clustering-based quality mea-
sure. Given a subgroup S and its complement SC , let πi denote the ranking of
labels in the ith record of S, and let πj denote the ranking in the jth record
of SC , where 1 ≤ i ≤ n and 1 ≤ j ≤ nC . We seek subgroups of records with
exceptional label preferences. Those subgroups should have rankings dissimilar
from the rankings in its complement. We define this notion of inter-subgroup
distance as

αcompl =
1

n · nC
·

n∑

i=1

nC
∑

j=1

d(πi, πj), (5)

where d(·, ·) is some distance metric between the two rankings.
In addition, we want the cases in the subgroup to have similar rankings

(i.e. to have small distance to one another), because coherent and homogeneous
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subgroups are 1) easier to interpret and 2) more practically relevant than het-
erogeneous subgroups. We define this notion of intra-subgroup distance as

β =
1

n · (n − 1)
·

n∑

h=1

n∑

i=1

d(πh, πi). (6)

Next, we divide the inter-subgroup distance α by the intra-subgroup distance β,
which results in the following quality measure,

ϕclus =
α

β + 1
· ξ, (7)

where ξ is a function that corrects for the subgroup size. We add 1 to the
denominator to account for perfect homogeneous subgroups (where β = 0).

Quality measure ϕclus is expected to give a high value when the subgroup is
homogeneous (β small), when the subgroup’s rankings are different from those in
its complement (α large) or, ideally, both. Hence, our proposed quality measure
is generic. Simultaneously, the distance function d(·, ·) can be specified by the
user, which allows for searching subgroups with specific ranking deviations.

If one is interested in comparing a subgroup with the average ranking in the
entire dataset, Eq. (5) can easily be adapted as follows,

αaverage =
1
n

n∑

i=1

d(πi, πD), (8)

where πD is the label ranking when all N data records are taken into account.
In this scenario, β does not change: we still aim to find coherent subgroups with
exceptional label rankings; only the reference behavior has changed.

4.1 Time Complexity

To traverse the space of candidate subgroups, we apply beam search, a commonly
used algorithm that is flexible in handling descriptive attributes of binary, cat-
egorical, and/or numerical type [4]. The algorithm performs a level-wise search
of d levels, where the first level evaluates candidate subgroups with descriptions
based on 1 descriptor and each subsequent level refines the descriptions of the
top-w subgroups. The time complexity of beam search for EMM [4] is given by

O(dwkE(c + M(N, �) + log(wq))), (9)

where E is the worst-case number of categories (binary and numerical attributes
are refined faster), c refers to the complexity of comparing the model in the
subgroup against another model, M(N, �) is the cost of learning a model on
N records and � targets and d, w, k, and q are as described before (cf. [4,
Section 4.2.1] for more details).

To evaluate the exceptionality of a candidate subgroup with quality measure
ϕclus, αcompl requires n · nC comparisons, αaverage requires n comparisons and β
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requires n ·(n−1) comparisons. The time complexity of one comparison depends
on the number of target attributes �. That means that the time complexity of
calculating ϕclus scales quadratically: O(�(n · (n−1)+n ·nC)) = O(N2 · �) (since
n and nC are both O(N)). The effect of c is already incorporated here.

The original EPM QMs [15,16] have a different time complexity. Calculating
a PM costs O(�2) per record; an average PM over n records then has a complexity
of O(n�2). In Sect. 5, we will further analyze these run times with synthetic
data. Section 6 evaluates the performance of our proposed quality measure on
real-world data.

4.2 Qualitative Differences Between ϕclus and Existing QMs

The added value of the quality measure is that it finds interesting results based
on the distance between the sum of the permutations of the subgroup and the
complement of the subgroup. Therefore, this quality measure should excel in
finding those subgroups where the general ranking of the target variables differs
greatly. Where previous work uses a general mean norm quality measure to find
subgroups for label ranking [6], ϕclus seems intuitively very similar to a norm-
based quality measure. It is different in that it tries to find subgroups based on
the deviation from the overall mean of the permutations of the labels.

Existing work introduces different approaches in order to find subgroups for
label ranking. Within EPM, preference matrices [16] are used; beyond pattern
mining, a meta learning technique to reduce label ranking to binary classifica-
tion was proposed [2]. Both these papers rely on preference matrices: label ranks
are transformed to an interval [0, 1] by averaging preferences of label pairs, thus
accumulating them to matrices, one representing the dataset (MD) and another
representing the subgroup (MS) [16]. Our algorithm, on the other hand, calcu-
lates the average distance of a label in the subgroup compared to those within
the subgroup S (β) and to those in the complement subgroup SC (α). The
quality measures presented in the studied literature all have clear use cases as
mentioned in Sect. 3, while our measure aims to be more generic.

The approach of the quality measure created in this paper is different from all
above-mentioned ones, thus could yield different interesting results. Besides this,
ϕclus should be robust with respect to variations in dataset metacharacteristics
that theoretically ought not to negatively affect the outcome of an Exceptional
Preferences Mining run. More specifically, the number of rows in the dataset
will likely not influence the quality measure as the similarities are normalized.
An increase in the number of target variables will likely make finding subgroups
more stable: more target variables will reduce the opportunity for sudden peaks
in the distance function. The number of descriptive attributes in a dataset almost
always affects local pattern mining techniques such as EPM: an increase in the
number of descriptors exponentially inflates the search space, making interesting
subgroups harder to find. The expectation is that this will be no different for
this quality measure.
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5 Synthetic Data Experiment

We generate data with N ∈ {100, 500, 1000} records. Each of these records can be
described by k ∈ {2, 8, 32} binary descriptors, which are independently sampled
from a binomial distribution ah ∼ Bin(N, p) with p = 0.5 for all 1 ≤ h ≤ k. For
the sake of simplicity and consistency, we let the true subgroup cover records
where a1 = 1 ∧ a2 = 1, resulting in subgroups with size n = 1

4N .
Each record has a ranking based on � ∈ {2, 8, 32} target attributes. Since we

want our synthetic data to resemble a real-world scenario as much as possible, we
first analyze the average ranking of the � = 37 political parties in the real-world
dataset (see Sect. 6). There, a party with rank v+1 has about 0.7 times as many
votes as the party with rank v, for all 1 ≤ v ≤ �. The variance of the number
of votes over the records had an average ratio with the number of votes of 0.03.
For the synthetic dataset, we therefore draw � target attributes from a normal
distribution tv ∼ N (μv, σ2

v) with mean μv = 0.7(v−1) and variance σ2
v = 0.03μv.

Given the number of votes per party, a ranking π per record is obtained as per
Sect. 2. Because of random sampling, π(v) may or may not have value v, but on
average the ranking in the entire dataset will be πD = (1, 2, . . . , �).

We experiment with three types of subgroups (N.B.: every dataset contains
one true subgroup, whose type is a simulation parameter):

reversed: we invert the values of the target attributes; the values of t1 are
swapped with the values of t�, the values of t2 are swapped with t�−1, etc.
On average, this will result in πrev = (�, � − 1, . . . , 2, 1).

pairwise-swapped: we swap each consecutive pair of attributes; the values of
t1 are swapped with the values of t2, the values of t3 are swapped with t4,
etc. This will result in πpair = (2, 1, 4, 3, . . . , �, � − 1) for even values of �.

last-to-first: here, no matter the values of attribute t�, we put λ� at rank 1,
resulting in πltf = (2, 3, . . . , � − 1, �, 1).

Note that because we generate the entire dataset first, and then replace the target
values of the records covered by the true subgroup definition, πSGC

= πD.
We evaluate the performance of ϕclus with α = αcompl, and experiment with

three types of subgroup size corrections: ξsqrt as given in Eq. (4), the entropy
function as proposed for EMM by [12],

ξentropy = − n

N
log

n

N
− nC

N
log

nC

N
, (10)

and no correction: ξnone = 1. The three ways of correction are chosen such that
they have opposite objectives: ξsqrt prefers larger subgroups, ξentropy prefers a
50/50 split of the dataset and ξnone guides the search towards small subgroups.
We run beam search with w = 20, d = 3 and evaluate whether or not the true
subgroup is present in the top-q subgroups with q = 10. For every combination
of parameters, we run the experiment nreps = 5 times and report the proportion
of true subgroups not appearing in the top-q result list, the average rank of the
true subgroups in that result list and the average run time. See https://github.
com/bendicsekb/data mining election for all source code and results.

https://github.com/bendicsekb/data_mining_election
https://github.com/bendicsekb/data_mining_election
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Fig. 1. Run time in seconds of the beam search algorithm for six quality measures,
varying dataset size and varying number of target attributes. (Color figure online)

5.1 Results

For the reversed subgroup type and the last-to-first subgroup type, all six QMs
(ϕnorm, ϕlabelwise, ϕpairwise, and ϕclus with three variants of ξ) find the ground
truth subgroup in 100% of the cases at the first position in the result list. Quality
measure ϕclus finds the pairwise-swapped subgroup type under all simulation
conditions when ξ = ξnone (when no subgroup size correction is applied). For
ξentropy and ξsqrt, the true subgroup cannot be found when both k and � are 32.
Like ϕclus with ξnone, quality measures ϕnorm and ϕlabelwise find the pairwise-
swapped subgroup under all simulation conditions. When N = 100, ϕlabelwise has
difficulty when the number of descriptors k is too large relative to the number
of targets � (8 vs. 2, 32 vs. 8 and 32 vs. 32). The problem disappears when N
increases to 500 or 1000.

Figure 1 presents the run times in seconds for all six quality measures for the
reversed subgroup type. Conclusions are similar for the pairwise-swapped and
last-to-first subgroup type. As discussed in Sect. 4.1, we see that ϕclus scales with
the number of rows N while the EPM QMs scale with the number of targets �.

6 Real-World Data Experiment

We analyze data from the 2021 Dutch general election, publicly available
at https://www.verkiezingsuitslagen.nl/verkiezingen/detail/TK20210317. The
dataset contains the number of votes for � = 37 political parties in N = 351
municipalities. We add information about socio-economic characteristics of the
municipalities such as the number of citizens, gender balance, age distribution,
migration background, number of companies, how many ducks go for slaughter
(proxy for rurality), total road length, and much more. That dataset is made
available by Statistics Netherlands (https://opendata.cbs.nl/statline/portal.
html? la=nl& catalog=CBS&tableId=70072ned& theme=237). Consequently,
we have k = 83 numerical descriptors.

https://www.verkiezingsuitslagen.nl/verkiezingen/detail/TK20210317
https://opendata.cbs.nl/statline/portal.html?_la=nl&_catalog=CBS&tableId=70072ned&_theme=237
https://opendata.cbs.nl/statline/portal.html?_la=nl&_catalog=CBS&tableId=70072ned&_theme=237
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Fig. 2. Difference in rank between a group and the average dataset ranking πD,
obtained with quality measure ϕclus (red: higher rank in group, blue: lower rank in
group, white: no difference). (Color figure online)

The goal is to find coherent subgroups of municipalities with an exceptional
ranking of political parties. We evaluate the performance of ϕclus in six scenarios,
combining the two comparisons with reference models αcompl and αaverage with
three types of subgroup size correction ξnone, ξentropy, and ξsqrt. As distance
function d(·, ·) within ϕclus we employ the Euclidean norm. The beam search is
run with parameters w = 30, d = 3, and q = 20, and minimum subgroup size
constraint of csize = 10%.

Figure 2 presents results. Each of the 9 panels shows the difference in label
ranking between a subgroup and the average dataset ranking πD (q = 20 by
� = 37). Here, red indicates that a political party has a higher rank in the
subgroup (more votes, moved to the left), blue represents a lower rank in the
subgroup (fewer votes, moved to the right) and white means that there is no
difference. The three columns in Fig. 2 correspond to the three types of subgroup
size correction. The three rows correspond to reference models αcompl (row 1 and
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2, Sect. 6.1) and αaverage (row 3, Sect. 6.2). The panels in the first two rows use
the same beam search results, but the top row gives the difference in ranking
for the discovered subgroups whereas the second row shows the results for the
complements of the discovered subgroups.

6.1 Comparing Against the Complement

When no subgroup size correction is applied, comparing candidate subgroups
with their complements results in subgroups with quite some exceptional pref-
erences (top left panel in Fig. 2). For instance, in the second subgroup, label λ5

and λ6 have moved to the right, while label λ7 and λ8 have moved to the left
(the first subgroup is an all-white subgroup). These labels correspond to three
relatively left-leaning parties (SP, PvdA, GroenLinks). Label λ8 corresponds to
FvD, a very right-leaning party. The subgroup covers municipalities with Green
pressure ≥ 37.2% ∧ Surinam migration background ≥ 0.8% ∧ Any-non western
migration background ≥ 9.6%. Here, green pressure refers to the ratio between
the number of people aged 0 to 20 and the number of people aged 20 to 65.
Municipalities with a high green pressure skew younger. Our results indicate
that younger citizens, or their parents, vote more extremely on the electoral
spectrum than older citizens.

In the center left panel, we see that the complement of this subgroup has a
label ranking that is similar to the average dataset ranking πD, except for labels
λ30 and λ31. For all subgroups (except for the first) found with ϕclus using ξnone
and αcompl, the subgroups have exceptional preferences while their complements
have average preferences.

We see an opposite effect when using ξsqrt to correct for subgroup size (top
right panel). Here, all q = 20 subgroups do not deviate from the average dataset
ranking. However, the complements of these subgroups show very exceptional
preferences relations (center right panel). For some of these complements, a
Christian party (CU) has obtained fewer votes (see blue color for λ10). That
happens for instance in the complement of subgroup 4, which is described by
Dutch background ≤ 92%. Apparently, in municipalities where the percentage of
citizens with a Dutch background is > 92% (the complement), people tend to
vote less for this particular Christian party.

Finding contrasting results for two opposite types of subgroup size correction
gives us more insight in the performance of ϕclus specifically and quality measures
in EMM in general. Remember that ϕclus is designed to generate exceptional and
homogeneous subgroups. Then, when the algorithm divides the dataset into two
groups and compares one group with the other (e.g., the complement), it rewards
the more homogeneous group and chooses that to be the subgroup.

Using ξsqrt as a correction factor and giving preference to larger subgroups,
the algorithm will select subgroups with records that are close to the dataset
norm; it is likely that there are more records with average ranking behavior
than there are records with similar non-average behavior. Using ξnone, we find
exceptional subgroups. Unfortunately, the consequence is that the subgroups are
very small and have a size just larger than the minimum constraint.
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Fig. 3. Label ranking of 10 random records in the best-scoring subgroup found with
ϕclus when comparing with the average dataset ranking and using no correction factor.
(Color figure online)

The entropy function gives results that are in-between (see center top panel
in Fig. 2). Although ϕclus still tends to select homogeneous subgroups, the prefer-
ence for subgroups that contain half the number of records generates subgroups
that do deviate from the norm, albeit for only a few labels. The complements of
these subgroups have more exceptional preferences.

6.2 Comparing Against the Average Dataset Ranking

The bottom row of Fig. 2 presents results for ϕclus using αaverage instead of
αcompl. A clear effect of that can be seen when we use ξnone. Then, the subgroups
have label rankings that deviate much more from the average ranking than when
we evaluate a candidate subgroup against its complement (compare left top panel
with left bottom panel). In this scenario, the inter-subgroup distance as given by
αaverage is larger than αcompl. At the same time, the subgroups are coherent in
target space and have small β, as can be seen for subgroup 1 in Fig. 3 where we
present the label ranking of 10 random records in the subgroup. Although some
fluctuations and differences between records exist, in general the records have
similar rankings. Unfortunately, these results do not carry over to the scenario
where we prefer larger subgroups (ξsqrt). Then, even though the subgroups have
average ranking behavior, the intra-subgroup distance β dominates the quality
value (bottom right panel in Fig. 2).

Like before, ξentropy finds an in-between solution and presents subgroups with
exceptional preferences while making sure that the subgroups have a meaningful
size (bottom center panel). Interestingly, the results are similar to those in the
center panel, where we evaluate the complements of subgroups that are found
under αcompl. Apparently, when using ξentropy in ϕclus, the reference group does
not matter as much and similar exceptional subgroups are found. The difference
is that these exceptional subgroups are not selected when we evaluate them
against their complements, because the latter are more homogeneous and will
therefore have a higher quality value.
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7 Conclusions

We propose a new quality measure for Exceptional Preferences Mining (EPM)
that identifies homogeneous subgroups in a dataset with unusual rankings of
a set of labels. Inspired by principles from clustering, where one optimizes for
low within-cluster distance or high between-cluster distance, we aim to identify
subgroups with preference relations that are dissimilar compared to the rest of
the dataset but very similar compared to records inside the subgroup.

As synthetic data experiments show (cf. Fig. 1), the time complexity of our
quality measure scales with the number of dataset records, as opposed to exist-
ing quality measures for EPM that scale with the number of labels. Runtimes
are roughly equivalent when the number of targets is 2 or 8, but our QM is
substantially faster when this number is 32.

When developing a quality measure for EMM (and hence also for EPM),
a correction for subgroup size should be included in order to steer the search
away from tiny subgroups. Furthermore, one has to choose the reference behav-
ior: is a candidate subgroup compared with its complement or with the average
behavior? We investigate these scenarios for a real-world dataset with informa-
tion about the voting behavior of municipalities in the Netherlands (cf. Fig. 2).
If we compare candidate subgroups S with their complements SC , we find that
a size correction that prefers larger subgroups results in a search where the
intra-subgroup distance dominates. Interestingly, exceptional ranking behavior
is happening in this result set, but on the complements of the subgroups that
EPM reports, which themselves display consistent but unexceptional behavior.
In contrast, when we do not apply a correction for subgroup size, EPM reports
subgroups are exceptional and homogeneous, but they only barely pass the min-
imum support constraint. To find subgroups of substantial size that also display
exceptional behavior themselves, the entropy function gives the best results.

Comparing candidate subgroups with the average dataset Ω delivers sub-
groups with very exceptional preferences, especially when there is no correction
for subgroup size. Then, the inter-subgroup distance will increase while excep-
tional subgroups are still coherent and homogeneous. When the entropy function
is used, we again find subgroups with exceptional preferences of meaningful size.
Comparing with Ω instead of SC leads to comparable results, but the excep-
tional behavior is more often encompassed by the subgroups resulted by EPM
instead of hidden away in their complements.
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