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Abstract. Ensuring that a predictive model respects monotonicity con-
straints can enhance societal acceptance of such models. Literature on
monotone classification shows that it can even improve classifier perfor-
mance. However, a set of applicable monotonicity constraints is often
assumed as input for the model. We propose RMI-RRG: a soft protocol
that can be employed to postulate monotonicity constraints for any tab-
ular dataset. The protocol encompasses consensus from scientific litera-
ture, aggregating the strength of (anti-)monotonicity relations in an RMI
Table, aggregating the effect of imposing more constraints on the num-
ber of relabelings required to fully monotonize the dataset in a Required
Relabelings Graph (RRG), and inspecting the effect on the comparabil-
ity rate. We illustrate the deployment of the protocol on six datasets,
arriving at some conclusions that deviate from conclusions from (mutu-
ally disagreeing) existing literature, and showing how individual steps in
the protocol each have their role to play in arriving at a final postulate.

Keywords: Monotone Classification · Monotonicity Constraints ·
RMI-RRG Protocol · Rank Mutual Information · Required Relabelings
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1 Introduction

If Person A and Person B both apply for a mortgage at the same mortgage
lender, if the data we have on both persons is identical except that we know
that Person A has a higher income, then it would be strange if Person B is
approved for the mortgage while Person A is not. In data mining we call such
an event a violation of a monotonicity constraint : all else equal, if the value of
certain input variables increase, we cannot have a decrease in the value of the
target. Literature (e.g. [6]) on monotone classification and regression has shown
that making it mandatory for a prediction model to respect given monotonicity
constraints can keep predictive performance at the same level while guaranteeing
no monotonicity violations, or even increase predictive performance.

Humans react quite viscerally to monotonicity constraints and their viola-
tions: we automatically connect this to a feeling of (un-)fairness, sometimes in
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an almost axiomatic way (such as in the mortgage example above). However,
given any tabular dataset, it is not necessarily obvious which monotonicity con-
straints are reasonable to postulate. Two paths exist in literature. The subjec-
tive approach inspects the domain of the dataset, reasons about the intrinsic
meaning of the target variable, connects this to reasoning about the intrinsic
meaning of input variables, and draws a conclusion about which monotonicity
constraints to impose. In the mortgage example this makes sense, but it comes
with two drawbacks. On the one hand, many datasets exist where monotonicity
constraints might be helpful but it is not that easy to reason about the domain
of the dataset, so this is hard to put in practice. On the other hand, the sub-
jective nature of this process may lead different researchers to draw different
conclusions. The objective approach measures something objective about the
relation between input variables and the output variable, and puts a threshold
on that measurement: any input variables whose relation to the output variable
surpasses the threshold, are deemed to have a monotonicity relation with the
output variable. Such a procedure is clear, objective, and ensures that anybody
who runs this procedure will always find the same answer; said answer can also
be completely arbitrary (due to the need to fix the threshold level somewhere)
and lead to suboptimal results. No existing solution is satisfactory.

In this paper, we introduce the RMI-RRG protocol : a soft protocol to answer
the question: “Given any tabular dataset, which monotonicity constraints should
we postulate?” It incorporates aspects of both approaches: the subjective and
the objective. We do not claim that all researchers that follow this protocol will
derive the exact same conclusions; this is why we call it a soft protocol. But we
show how a scientific consensus can give us a good first insight. We show that a
summary of the direction and strength of monotonicity relations as provided in
an RMI Table (cf. Sect. 5) can sharpen the image. We show how we can correct
misleading conclusions from RMI Tables, by inspecting the Required Relabelings
Graph (RRG, cf. Sect. 6): a visualization of the effect that imposing additional
constraints has on the number of relabelings required to fully monotonize the
dataset. We show how inspection of comparability rates and mRMR values can
finetune the conclusions. In the end, we deploy the RMI-RRG protocol on six
datasets, resulting in postulating monotonicity constraints on each dataset.

2 Related Work

Monotonicity is a fundamental concept spanning mathematics and various disci-
plines, denoting the preservation of order. In simple terms, a function or relation
is deemed to satisfy (anti-)monotonicity if it maintains the (reversed) order of its
inputs in the outputs. Specifically, for any pair of values, if one value is greater
than or equal to the other, the corresponding output must retain the same (or,
in case of antimonotonicity, reversed) order.

Monotonicity finds applications across diverse fields such as economics, statis-
tics, optimization, mathematics, and computer science. In economics, it primarily
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models preferences and utility functions [5], while statistics employs it for non-
parametric regression and analyzing ordered categorical data [21]. In optimiza-
tion, monotonicity often serves as a foundation for convergence and efficiency
[26]. In machine learning and pattern recognition, monotonicity assumptions can
enhance model interpretability and generalization. By introducing monotonic-
ity constraints, meaningful trends and relationships in data can be captured.
This proves invaluable in domains like credit scoring, risk assessment, or fraud
detection, where monotonic patterns are expected [17].

Classification is one domain that notably benefits from monotonicity. Lever-
aging monotonic relationships empowers classifiers to align with domain-specific
expectations, refine model performance, and furnish more dependable and inter-
pretable predictions [15,19].

For a survey on classification with monotonicity constraints, see [4]. The
paper encompasses extensively employed datasets, monotonic preprocessing,
relabeling techniques, and a diverse set of classifiers respecting monotonicity
constraints. One of the earlier applications of monotone constraints to kNN
classification [6] showed that adapting kNN to respect monotonicity constraints
can be achieved without loss of predictive accuracy; in fact, predictive accuracy
increases on some datasets. Monotonicity constraints have also been imposed
when employing kNN as a kernel method [16], yielding markedly superior results
compared to the baseline kernel estimators. Other notable monotone classifiers
are MonoBoost [2] and MonGel [8].

3 Preliminaries and Notation

Let X denote the n × p matrix of input variables, where each row represents an
observation with values x. Let πS(X) denote the projection of X on any subset
S ⊆ {1, . . . , p} of the input variables. Let Y denote an n × 1 vector representing
the output variable, taking on values from a one-dimensional space Y, where
Y ⊆ R. Let D = {(xi, yi)}ni=1 denote the bag of observed data points.

A function f is said to be monotone if it preserves order, meaning that
the ordering of the input values is preserved in the output values. Two types of
monotone functions exist: increasing or decreasing (also known as non-decreasing
or non-increasing, respectively). Specifically, a function is monotone increasing
if, for any two values x and x′ in the domain of f , it holds that x ≤ x′ ⇒ f(x) ≤
f(x′), or, for a decreasing monotone function: x ≤ x′ ⇒ f(x) ≥ f(x′).

A partial order is assumed for X, denoted by ≤X . The partial order estab-
lishes criteria for determining the order between input values in X. A pair of
points (xi, xj) in a dataset are said to be comparable if xi ≥ xj ∨ xj ≥ xi, and
incomparable if not. A pair of comparable data points (xi, yi) and (xj , yj) is
considered monotone if the ordering of the input variables is preserved in the
output labels. In other words, if xi ≥X xj , then it must hold that yi ≥ yj .
Dataset D is considered monotone if all combinations of pairs of data points are
either monotone or incomparable. We overload the partial order notation with
any subset S of input variables, such that xi ≤S xj evaluates the comparability
of xi and xj only on πS(X).
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Definitions stated above assume a direct monotone restriction on the data,
but an inverse relation is also possible. In that case the definition for an anti-
monotone pair of data points would be xi ≥ xj ⇒ yi ≤ yj .

For any data point xi and subset S of input variables, let the upset ↑(i,S)

and downset ↓(i,S) be:

↑(i,S)= {xj ∈ D | xi ≤S xj} ↓(i,S)= {xj ∈ D | xj ≤S xi}
The upset of xi consists of all points whose input values are considered ‘higher’,
when limited to variables in S, than xi. The downset consists of all data points
‘lower’ than xi. Again, for variables with an antimonotone relation these defini-
tions would also be inverted.

3.1 Rank Mutual Information

Rank Mutual Information (RMI) [12] evaluates the monotonic consistency
between variables. The RMI between variables A and B is:

RMI({A}, {B}) = − 1
n

n∑

i=1

log
| ↑(i,{A}) | · | ↑(i,{B}) |

n · | ↑(i,{A}) ∩ ↑(i,{B}) |

Applying this formula to an input and an output variable will deliver a value that
can range from [−∞,∞]. In practice this value rarely ranges beyond (−1.5, 1.5).
The RMI gives the properties of strength (sign of the RMI) and direction (mag-
nitude of the RMI) between one or more variables and a target. RMI measures
the type of information needed while also being fairly robust against noise [11].

3.2 Relabeling

Some data mining algorithms (e.g., [6]) that guarantee respecting monotonicity
constraints in their predictions, require as input a dataset that fully respects
those same constraints. If the training data respects monotonicity constraints,
any prediction such a method makes on test/validation data will necessarily also
respect the constraints. A problem is that many datasets contain some mono-
tonicity violations. A typical approach then is to relabel values in the affected
target columns, so as to not violate monotonicity. Several optimal relabeling
methods have been proposed, including Feelders relabeling [7,10], Single-pass
Optimal Ordinal relabeling [20], and Optimal Flow Network relabeling [6,7].
These methods minimize the number of instances to relabel, and the relabeled
dataset can be viewed as a monotone classifier that minimizes the error rate on
the training data [6].

4 Main Direct Competitors

We will briefly go over our main competitors in this section. Keep in mind that
the final goal of each method in this section is to come up with a set of postulates:
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these are the input variables for which we have decided that a monotonicity
constraint can be imposed between the input and the output variable. Along the
way, we will often measure some monotonicity relations between input variables
and the output variable that can come with a given strength. The final outcome,
however, will have to turn these fuzzy monotonicity relations into a set of hard
postulated monotonicity constraints.

4.1 Subjective Approaches

The traditional approach is the subjective one, where scientists reason about the
domain of the datasets under consideration. One typically goes by the common
sense approach as exemplified by the first paragraph of Sect. 1 of this paper: if
two persons are identical except that Person A has a higher income than Person
B, it would be ridiculous if Person B gets a mortgage while Person A does not.
This “it stands to reason” test has been the gold standard in classification under
monotonicity constraints. An example is provided by [6]. The most extensive
example of this procedure, involving a careful evaluation of each dataset and the
identification of variables based on domain knowledge, is given in [24].

4.2 Objective Approaches

Most of the objective strategies assume the existence of monotonicity relations
between input variables and the output variable, and will then use a combination
of the strength and direction of this relation to decide whether to include it as
a postulate. The most common and simple strategy here is to assume that all
variables have a relation with the target and assign a direction to them. This
can be seen in [22] and [27], where tables containing information on the datasets
clearly show the inclusion and direction of all chosen datasets; how the direction
of the relation was established remains opaque.

Rank Mutual Information (RMI) can represent the strength of all monotonic-
ity relations in the dataset; subsequently, a hard constraint on its values can be
imposed to arrive at a set of monotonicity constraints. The authors of [4] have
used |RMI| > 0.1 as the cutoff value: a monotonicity constraint will be postu-
lated on an input variable and the output variable if and only if their absolute
RMI value surpasses 0.1. Personal communication with the authors revealed that
there seems to be no substantial reason for choosing this particular cutoff value.

The authors of [13] propose to use the RMI in combination with the min-
Redundancy Max-Relevance (mRMR) algorithm to calculate optimal subsets of
variables. The goal here is to iteratively add the variable with the highest ranked
RMI value to the chosen set, while taking into account whether doing so would
merely introduce redundant information. When to stop adding variables is not
specified: the authors recommend to choose a fixed number of variables and
apply that to each dataset, which strikes us as a blunt, arbitrary instrument.

Table 1 lists methods used in selecting which monotonicity constraints to
postulate during experimentation, with an example of a paper deploying that
strategy. Clearly, there is a wide range of strategies without any clear consensus.
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5 RMI Tables and Required Relabelings Graphs

Our protocol employs two forms of data aggregation. On the one hand, for each
dataset, we will order the input variables by decreasing absolute RMI values (cf.
Table 3 for examples of such RMI Tables on real datasets); denote this order-
ing of input variables by x(1), x(2), . . . , x(p). It stands to reason that in terms of
monotonicity relations with the target variable, x(1) will be the input variable
with the strongest relation, and x(p) will be the input variable with the weakest
relation. On the other hand, subsequently, for each dataset, we will generate the
Required Relabelings Graphs (RRGs). This is a line graph consisting of p obser-
vations. For each observation 1 ≤ i ≤ p, we compute the number of relabelings
required to make the dataset fully monotone, postulating a monotonicity rela-
tion between the output variable and all of the top-i strongest-related variables
{x(1), . . . , x(i)}. Informally, as our index i increases, we keep expanding the set of
input variables for which we postulate a monotonicity constraint (starting with
the strongest such relations). As this set expands, one could reasonably expect
the constraints to become more pressing, but the number of comparable pairs
of observations will reduce. See Fig. 1 for examples of RRGs on real datasets.
From RRGs one would hope to observe behavior such as in Fig. 1a: the num-
ber of required relabelings decreases, but the curve flattens beyond some point,
indicating that postulating more constraints likely has limited benefits.

The point of these data aggregations is: we think RMI has something inter-
esting to say about monotonicity relations, but boiling that message down to
a threshold on the RMI value is likely too blunt an instrument. Inspecting the
RMI Tables and the RRGs should provide more information.

6 The RMI-RRG Protocol

The RMI-RRG Protocol is a soft protocol for postulating monotonicity con-
straints on any tabular dataset, encompassing the following four steps:

1. Literature consistency check: identify input variables that are consistently
recognized in the existing literature.

2. RMI alignment: cross-reference the input variable with their respective RMI
values (cf. Table 3).

Table 1. Monotonicity constraint postulation strategies.

Strategy Example reference

Selecting constraints based on a priori information [2]
Selecting constraints based on other literature [24]
Postulating all constraints [9]
Selecting constraints based on RMI [4,18]
No explanation given [1]
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Table 2. Dataset metadata.

D n p Y Y type Relabels comp. % Source

Breast Cancer 683 9 Class bin 12 0.821 [14]
Car 1728 6 Decision cat (4) 466 0.528 [14]
CMC 1473 9 contraceptive cat (3) 865 0.657 [14]
Pasture 36 22 pasture-prod-class cat (3) 2 0.694 [23]
PIMA 768 8 Outcome bin 198 1.0 [14]
Windsor 546 11 price num 241 0.414 [14]

3. RRG analysis: address any discrepancies between literature consensus and
RMI values by inspecting the Required Relabelings Graph (cf. Fig. 1).

4. Comparability assessment: evaluate whether the inclusion of a variable
impacts the comparability of the dataset or necessitates a substantial number
of relabels; exclude those variables with an outsized negative impact.

Whether input variables are included as a monotone or an antimonotone relation
is decided by the sign of the RMI value.

7 Experimental Results

We collected a set of datasets, including the ten most commonly used ordinal
datasets in monotone classification literature [4], the datasets used in the original
kNN classification under monotonicity constraints paper [6], and four additional
ordinal datasets [3]. From this set of 16 datasets, we report results on a selection
of six datasets in this paper: these are the six datasets from which the most
interesting conclusions could be drawn. Results on the other ten datasets are
available in the MSc thesis [25, Chapter 5] from which this paper was derived.

Table 2 provides metadata on the datasets in this paper. The column ‘rela-
bels’ contains the number of relabels necessary to make the dataset fully mono-
tone (cf. Sect. 3.2), and ‘comp. %’ shows the fraction of all possible pairs in the
dataset that are comparable. The last column indicates the source from which
the dataset was obtained.

7.1 Breast Cancer

The RMI values of the first few attributes (cf. Table 3a) are fairly close together
and seem promising. Figure 1a reveals that imposing constraints on variables
after Bland_Chromatin flattens the curve, which could be an indication of
these subsequent variables being redundant. Checking the redundancy between
the variables with the highest RMI scores and these latter ones confirms this.
We postulate monotonicity constraints on Uniformity_Size, Uniformity_Shape,
Bare_Nuclei, and Bland_Chromatin.
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Table 3. RMI Tables for every dataset in Table 2; only a limited number of attributes
with highest absolute RMI are shown, due to space limitations.

Variable Uniform_Size Uniform_Shape Bare_Nuclei Bland_Chromatin Single_Cell_Size
RMI 0.501 0.499 0.473 0.459 0.442

(a) Breast Cancer.

Variable safety no. persons buying price maintenance cost lug_boot no. doors
RMI 0.246 0.175 -0.107 -0.095 0.078 0.032

(b) Car.

Variable wife_age wife_edu husband_occup num_child SOL_index wife_working husband_edu
RMI -0.194 0.052 0.035 0.028 0.025 0.023 0.021

(c) CMC.

Variable HFRG-pct-mean OlsenP Leaf-P Eworms-main-3 MinN NFIX-mean
RMI 0.659 0.598 0.592 0.561 0.54 0.526

(d) Pasture.

Variable Glucose BMI Pregnancies Age DPF Insulin BloodPressure SkinThickness
RMI 0.316 0.187 0.139 0.138 0.121 0.096 0.093 0.087

(e) PIMA.

Variable lotsize stories bathrooms garage bedrooms aircon prefer recreation

RMI 0.631 0.349 0.347 0.316 0.299 0.291 0.192 0.134
mRMR 0.63 0.31 0.30 0.29 0.29 0.28 0.14 0.13

(f) Windsor.

7.2 Car

This dataset proved to be rather controversial. Most literature [4,22] claims
that all input variables have a direct relation with the target variable. The RMI
values (cf. Table 3b, Fig. 1b) disagree: only two or three variables seem even
remotely fit to consider. Assuming constraints on all input variables, the fraction
of observation pairs that is comparable is 14%. Limiting the constraints to only
safety, number of persons, and buying price, increases the comparability rate to
52%. Hence, we postulate only those monotonicity constrains.

7.3 CMC

The CMC dataset illustrates the added value of the RRG on top of the RMI
Table. From Table 3c, the wife_age variable seems to be the only sensible candi-
date for a monotonicity constraint: existing objective approaches [4] would draw
that conclusion. But Fig. 1c shows that something more interesting is happening.
While assuming constraints on wife_edu and husband_occup does not influence
the number of required relabels much, subsequent variables do have an outsized
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(a) Breast Cancer. (b) Car.

(c) CMC. (d) Pasture.

(e) PIMA. (f) Windsor.

Fig. 1. Required Relabelings Graphs (RRGs) for every dataset in Table 2.

influence. Hence, we postulate monotonicity constraints on wife_age, wife_edu,
husband_occup, and num_child. As part of a reason why this RRG moves in this
strange shape, we hypothesize this is caused by wife_edu and husband_occup
being categorical variables while wife_age and num_child are numerical. Pos-
tulating monotonicity constraints on numerical variables will most likely lead
to smoother behavior than postulating such constraints on categorical variables,
since the changes in the values for numerical variables can be much more subtle.

7.4 Pasture

This dataset only contains 37 observations, which means that the comparability
and the number of relabels becomes more important than the raw values in
Table 3d. Figure 1d shows that imposing constraints on variables after FRG-pct-
mean, OlsenP, and Leaf-P, would lower the number of relabels to 0. This suggests
that the number of comparable pairs of observations decreases drastically, which
is indeed confirmed by measurement: comparability rate drops from 69% to
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43% upon inclusion of a fourth constraint. Hence, we postulate monotonicity
constraints on FRG-pct-mean, OlsenP, and Leaf-P.

7.5 PIMA

Literature disagrees on treatment of this dataset: [24] assumes monotonicity
constraints on four variables, where [4] uses six. Only the Glucose variable has a
substantially outlying RMI value (cf. Table 3e). Figure 1e shows that constraints
on additional variables do not impact the number of required relabels in any
unusual way. By lack of reason to decide otherwise, we exclude from consideration
all variables whose absolute RMI value is lower than 0.1, hence postulating
monotonicity constraints on Glucose, BMI, Pregnancies, Age, and DPF.

7.6 Windsor

There is no literature that specifically states which variables and directions are
to be constrained in this dataset. The RMI values (cf. Table 3f) indicate that
any variable lower than 0.2 is probably best excluded. Figure 1f shows that there
are no unusual hitches for any specific variable. The mRMR values do show that
redundant information is introduced for any variable after aircon, which can be
seen in the drop in value. Hence, we postulate monotonicity constraints on all
variables except prefer and recreation.

8 Conclusions

Monotonicity constraints make sense to human intuition. Ensuring that predic-
tive models respect monotonicity constraints can increase societal acceptability
of such models, and even increase their predictive performance. However, there
is no consensus in scientific literature on how to determine which monotonicity
constraints to assume for a given dataset. This paper provides RMI-RRG, a soft
protocol to postulate monotonicity constraints for any tabular dataset.

Section 5 introduces two forms of data aggregation employed in the protocol.
On the one hand, the RMI Table orders the input variables of a dataset by
their perceived strength of (anti-)monotone relation to the target variable; it
also provides the perceived direction of this relation. On the other hand, the
Required Relabelings Graph (RRG) shows more detailed effects, of imposing
constraints on additional variables, on the number of relabelings required to fully
monotonize the dataset. The RMI-RRG protocol (cf. Sect. 6) incorporates these
two aggregation methods, along with consensus from literature and assessment
of comparability rates, into a final judgment.

In Sect. 7 we illustrate application of the RMI-RRG protocol on six datasets.
Results encompass fairly typical behavior (Breast cancer dataset), a clear con-
clusion that disagrees with literature (Car), the added value of the RRG over
existing methods (CMC ), the necessity to look at comparability rates (Pasture)
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and mRMR values (Windsor), and a decisive conclusion where existing literature
draws multiple distinct conclusions (PIMA).

RMI-RRG is a soft protocol: while we think it will often lead in a fairly
clear direction, it is still possible that multiple scientists can arrive at multiple
distinct conclusions. We think that this is unavoidable: monotonicity is, to a
degree, in the eye of the beholder. We claim that the ambiguity of RMI-RRG
is better than the objective arbitrariness of setting a hard threshold of 0.1 on
the absolute RMI values [4], while RMI-RRG provides more information leading
to more informed decisions than existing subjective approaches [6,24]. Future
improvements might include separate treatment for categorical and numerical
input variables (cf. Sect. 7.3), and a tradeoff between the number of required
relabelings and the comparability rate.
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