Wouter Duivesteijn: full publication list
Back to the homepage.
Journal publications
- P.J.A.M. Mulders, E.R. van den Heuvel, P. Reidsma, W. Duivesteijn:
Introducting
exceptional growth mining - Analyzing the impact of soil
characteristics on on-farm crop growth and yield variability.
In: PLOS ONE 19(1):e0296684, 2024.
Impact factor: 3.7 (2022).
- R.M. Schouten, M.L.P. Bueno, W. Duivesteijn, M. Pechenizkiy:
Mining Sequences with Exceptional
Transition Behaviour of Varying Order using Quality Measures based
on Information-Theoretic Scoring Functions. In: Data Mining
and Knowledge Discovery 36(1), pp. 379-413, 2022.
Impact factor: 4.8.
- X. Du, L. Sun, W. Duivesteijn, A. Nikolaev, M. Pechenizkiy:
Adversarial balancing-based representation
learning for causal effect inference with observational data.
In: Data Mining and Knowledge Discovery 35, pp. 1713-1738,
2021.
Impact factor: 5.406.
- J.M. Luna, M. Pechenizkiy, W. Duivesteijn, S. Ventura:
Exceptional in So Many Ways - Discovering Descriptors
that Display Exceptional Behavior on Contrasting Scenarios.
In: IEEE Access 8, pp. 200982-200994, 2020.
Impact factor: 3.367.
- W. Duivesteijn, S. Hess, X. Du:
How
to Cheat the Page Limit. In: WIREs Data Mining and Knowledge
Discovery 10 (3), e1361, 2020.
Impact factor: 7.250.
- X. Du, Y. Pei, W. Duivesteijn, M. Pechenizkiy:
Exceptional Spatio-Temporal Behavior
Mining through Bayesian Non-Parametric Modeling. In: Data Mining
and Knowledge Discovery 34, pp. 1267-1290, 2020.
Impact factor: 3.670.
- C. Rebelo de Sá, W. Duivesteijn, P. Azevedo, A.M. Jorge,
C. Soares, A. Knobbe: Discovering a Taste
for the Unusual - Exceptional
Models for Preference Mining. In: Machine Learning 107 (11),
pp. 1775-1807, 2018.
Impact factor: 2.809.
- L. Downar, W. Duivesteijn:
Exceptionally Monotone Models
- the Rank Correlation Model Class for Exceptional Model Mining.
In: Knowledge and Information Systems 51 (2), pp. 369-394, 2017.
Impact factor: 2.247.
- C. Pölitz, W. Duivesteijn, K. Morik:
Interpretable
Domain Adaptation via Optimization over the Stiefel Manifold. In:
Machine Learning 104 (2-3), pp. 315-336, 2016.
Impact factor: 1.848.
- W. Duivesteijn: Correction to Jin-Ting Zhang's
"Approximate and Asymptotic Distributions of Chi-Squared-Type
Mixtures with Applications". In: Journal of the American
Statistical Association 111 (515), pp. 1370-1371, 2016.
Impact factor: 2.016.
- W. Duivesteijn, A.J. Feelders, A. Knobbe:
Exceptional Model Mining - Supervised
Descriptive Local Pattern Mining with Complex Target Concepts.
In: Data Mining and Knowledge Discovery 30 (1), pp. 47-98, 2016.
Impact factor: 3.160.
- R.M. Konijn, W. Duivesteijn, M. Meeng, A. Knobbe:
Cost-based Quality Measures in
Subgroup Discovery. In: Journal
of Intelligent Information Systems, 45 (3), pp. 337-355, 2015.
Impact factor: 1.000.
- P. Lohuis, S. Faraj-Hakim, W. Duivesteijn, A. Knobbe, A.-J.
Tasman: Benefits of a Short, Practical
Questionnaire to Measure
Subjective Perception of Nasal Appearance after Aesthetic
Rhinoplasty. In: Plastic and Reconstructive Surgery
132 (6), pp. 913e-923e, 2013.
Impact factor: 3.328.
- P.J.F.M. Lohuis, S. Hakim, A. Knobbe, W. Duivesteijn, G.M.
Bran: Split hump technique for reduction of the overprojected nasal
dorsum - a statistical analysis on subjective body image in relation
to nasal appearance and nasal patency in 97 aesthetic rhinoplasty
patients. In: Archives of Facial Plastic Surgery 14 (5),
pp. 346-353, 2012.
Impact factor: 1.463.
- S. Hakim, A. Knobbe, W. Duivesteijn, P.J.F.M. Lohuis:
Results of a screening questionnaire measuring physical
perception of patients undergoing esthetic rhinoplasty: a
statistical analysis. In: Nederlands Tijdschrift voor
Keel-Neus-Oorheelkunde (Dutch Journal for
Otorhinolaryngology) (2), p. 100, 2010.
Impact factor: 0.
Conference publications
- R.M. Schouten, G.W.J.M. Stevens, S.A.F.M. van Dorsselaer, E.L. Duinhof,
K. Monshouwer, M. Pechenizkiy, W. Duivesteijn: Analyzing the interplay
between societal trends and socio-demographic variables with local
pattern mining: Discovering exceptional trends in adolescent alcohol use
in the Netherlands.
Accepted for presentation at BNAIC/BeNeLearn 2024, to appear.
- N.T.J. van den Berg, B.O. Broekgaarden, D.P.A. Mahieu, J.G.M.J. Martens,
J.M. Niederle, R.M. Schouten, W. Duivesteijn: Generating MNAR Missingness
in Image Data, with Additional Evaluation of MisGAN.
Accepted for presentation at BNAIC/BeNeLearn 2024, to appear.
- R.M. Schouten, W. Duivesteijn, P.J. Räsänen, J. Paul,
M. Pechenizkiy: Exceptional Subitizing Range: Exploring Mathematical
Abilities of Finnish Primary School Children with Piecewise Linear
Regression. In: Proceedings of the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML PKDD 2024), Part X, pp. 66-82, 2024.
Acceptance rate: 0.2500 (56 out of 224).
- I. Vloothuis, W. Duivesteijn: RMI-RRG: a Soft Protocol to Postulate
Monotonicity Constraints for Tabular Datasets. In: Proceedings of
the 22nd International Symposium on Intelligent Data Analysis
(IDA 2024), Part I, pp. 16-27, 2024.
Acceptance rate: 0.4040 (40 out of 99).
- R.F.A. Verhaegh, J.J.E. Kiezebrink, F. Nusteling, A.W.A. Rio,
M.B. Bendiscek, W. Duivesteijn, R.M. Schouten: A Clustering-inspired
Quality Measure for Exceptional Preferences Mining - Design Choices and
Consequences. In: Proceedings of the 25th International Conference on
Discovery Science (DS 2022), pp. 429-444.
Acceptance rate: 0.4655 (27 out of 58). Including short
papers: 0.6724 (39 out of 58).
- J.F. van der Haar, S.C. Nagelkerken, I.G. Smit, K. van Straaten, J.A. Tack,
R.M. Schouten, W. Duivesteijn: Efficient Subgroup Discovery Through
Auto-Encoding. In: Proceedings of the 20th International Symposium
on Intelligent Data Analysis (IDA 2022), pp. 327-340.
Acceptance rate: 0.4366 (31 out of 71).
- R.M. Schouten, W. Duivesteijn, M. Pechenizkiy: Exceptional Model Mining
for Repeated Cross-Sectional Data (EMM-RCS). In: Proceedings of
the 2022 SIAM International Conference on Data Mining
(SDM 2022), pp. 585-593.
Acceptance rate: 0.2785 (83 out of 298).
A substantially longer version appeared on Figshare.
- Y. Soons, R. Dijkman, M. Jilderda, W. Duivesteijn:
Predicting Remaining Useful Life with Similarity-based Priors.
In: Proceedings of the 18th International
Symposium on Intelligent Data Analysis (IDA 2020), pp. 483-495, 2020.
Acceptance rate: 0.3947 (45 out of 114).
- X. Du, Y. Pei, W. Duivesteijn, M. Pechenizkiy:
Fairness in
Network Representation by Latent Structural Heterogeneity in
Observational Data.
In: Proceedings of the Thirty-Fourth AAAI Conference
on Artificial Intelligence (AAAI 2020), pp. 3809-3816, 2020.
Acceptance rate: 0.2056 (1591 out of 7737).
- A. Belfodil, W. Duivesteijn, M. Plantevit, S. Cazalens,
P. Lamarre: DEvIANT: Discovering significant exceptional
(dis-)agreement within groups.
In: Proceedings of the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML PKDD 2019), pp. 3-20, 2019.
Acceptance rate: 0.1771 (130 out of 734).
- S. Hess, W. Duivesteijn: k is the Magic Number - Inferring
the Number of Clusters Through Nonparametric Concentration
Inequalities. In: Proceedings of the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML PKDD 2019), pp. 257-273, 2019.
Acceptance rate: 0.1771 (130 out of 734).
- S. Hess, W. Duivesteijn, P.-J. Honysz, K. Morik:
The SpectACl
of Nonconvex Clustering: A Spectral Approach to Density-Based
Clustering. In: Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence (AAAI 2019), pp. 3788-3795, 2019.
Acceptance rate: 0.1621 (1150 out of 7095).
- X. Du, W. Duivesteijn, M. Klabbers, M. Pechenizkiy:
ELBA:
Exceptional Learning Behavior Analysis. In: Proceedings of the
Eleventh International Conference on Educational Data Mining
(EDM 2018), pp. 312-318, 2018.
Acceptance rate: 0.4207 (61 out of 145).
- J. Lijffijt, B. Kang, W. Duivesteijn, K. Puolamäki,
E. Oikarinen, T. De Bie: Subjectively Interesting Subgroup Discovery
on Real-valued Targets. In: Proceedings of the 34th IEEE
International Conference on Data Engineering (ICDE 2018), pp.
1352-1355, 2018.
Acceptance rate: 0.2311 (98 out of 424).
A substantially longer version appeared on arXiv.
- W. Duivesteijn, T. Farzami, T. Putman, E. Peer, H.J.P.
Weerts, J.N. Adegeest, G. Foks, M. Pechenizkiy: Have It Both Ways - from
A/B Testing to A&B Testing with Exceptional Model Mining. In:
Proceedings of the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML PKDD
2017), part III, pp. 114-126, 2017.
Acceptance rate: 0.2903 (27 out of 93).
- C. Rebelo de Sá, W. Duivesteijn, C. Soares, A. Knobbe:
Exceptional Preferences Mining. In: Proceedings of the 19th
International Conference on Discovery Science (DS 2016), pp. 3-18,
2016.
Acceptance rate: 0.5000 (30 out of 60).
- L. Downar, W. Duivesteijn:
Exceptionally Monotone Models
- the Rank Correlation Model Class for Exceptional Model Mining.
In: Proceedings of the 15th IEEE International Conference on
Data Mining (ICDM 2015), pp. 111-120, 2015.
Acceptance rate: 0.0843 (68 out of 807). Including short papers: 0.1821 (147 out of 807).
A substantially longer version appeared as a Bachelor Thesis at the TU Dortmund.
- W. Duivesteijn, J. Thaele: Understanding Where Your
Classifier Does (Not) Work. In: Proceedings of the European
Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD 2015) (III),
pp. 250-253, 2015.
Acceptance rate: 0.4828 (14 out of 29).
- W. Duivesteijn, J. Thaele: Understanding Where Your Classifier Does (Not) Work - the SCaPE Model Class for EMM.
In: Proceedings of the 14th IEEE International Conference on
Data Mining (ICDM 2014), pp. 809--814, 2014.
Acceptance rate: 0.1953 (142 out of 727).
A substantially longer version appeared as a Technical Report of the SFB 876 at the TU Dortmund.
- J. Witteveen, W. Duivesteijn, A. Knobbe, P.
Grünwald: RealKRIMP - Finding Hyperintervals that Compress with MDL
for Real-Valued Data. In: Proceedings of the 13th International
Symposium on Intelligent Data Analysis (IDA 2014), pp. 368--379, 2014.
Acceptance rate: 0.4800 (36 out of 75).
A substantially longer version appeared as a Bachelor thesis at the Universiteit Leiden.
- M. Meeng, W. Duivesteijn, A. Knobbe: ROCsearch - An
ROC-guided Search Strategy for Subgroup Discovery. In:
Proceedings of the 2014 SIAM International Conference on Data
Mining (SDM 2014), pp. 704-712, 2014.
Acceptance rate: 0.3084 (120 out of 389).
- W. Duivesteijn, A. Knobbe: Exceptional Model Mining - Describing
Deviations in Datasets. In: Proceedings of the 22nd Belgian-Dutch
Conference on Machine Learning (BENELEARN 2013), p. 86, 2013.
Acceptance rate: 0.8919 (33 out of 37).
- R.M. Konijn, W. Duivesteijn, W. Kowalczyk, A. Knobbe:
Discovering Local Subgroups, with an Application to Fraud
Detection.
In: Proceedings of the 17th Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD 2013), pp. 1-12, 2013.
Acceptance rate: 0.1134 (39 out of 344). Including short presentations: 0.2849 (98 out of 344).
- W. Duivesteijn, E. Loza Mencía, J. Fürnkranz,
A. Knobbe: Multi-label LeGo - Enhancing Multi-label Classifiers
with Local Patterns. In: Proceedings of the 11th International
Symposium on Intelligent Data Analysis (IDA 2012), pp. 114-125, 2012.
Acceptance rate: 0.2250 (18 out of 80). Including poster
presentations: 0.4375 (35 out of 80).
A substantially longer version appeared as a Technical Report of
the TU Darmstadt, TUD-KE-2012-02.
- G. Ribeiro, W. Duivesteijn, C. Soares, A. Knobbe: Multilayer
Perceptron for Label Ranking. In: Proceedings of the 22nd International
Conference on Artificial Neural Networks (ICANN 2012), pp. 25-32, 2012.
Acceptance rate: 0.6559 (162 out of 247).
- W. Duivesteijn, A.J. Feelders, A. Knobbe:
Different Slopes for Different Folks -
Mining for Exceptional Regression Models with Cook's Distance.
In: Proceedings of the 18th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD 2012), pp. 868-876, 2012.
Acceptance rate: 0.1762 (133 out of 755).
- W. Duivesteijn, A. Knobbe:
Exploiting False Discoveries -
Statistical Validation of Patterns and Quality Measures in
Subgroup Discovery. In: Proceedings of the 11th IEEE International Conference on
Data Mining (ICDM 2011), pp. 151-160, 2011.
Acceptance rate: 0.1285 (101 out of 786). Including short
papers: 0.1883 (148 out of 786).
- W. Duivesteijn, A. Knobbe, A.J. Feelders, M. van Leeuwen:
Subgroup Discovery meets Bayesian networks - an Exceptional
Model Mining approach. In: Proceedings of the 10th IEEE International
Conference on Data Mining (ICDM 2010), pp. 158-167, 2010.
Acceptance rate: 0.0903 (72 out of 797). Including short
papers: 0.1945 (155 out of 797).
- W. Duivesteijn, A.J. Feelders: Nearest Neighbour Classification
with Monotonicity Constraints. In: Proceedings of the European Conference
on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD) 2008 (I), pp. 301-316, 2008.
Acceptance rate: 0.1919 (100 out of 521).
Workshop publications
- W. Duivesteijn, T.C. van Dijk: Exceptional
Gestalt Mining: Combining Magic Cards to Make Complex Coalitions
Thrive. In: Proceedings of the 8th Workshop on Machine
Learning and Data Mining for Sports Analytics, pp. 191-204, 2021.
- S.B. van der Zon, W. Duivesteijn, W. van Ipenburg, J. Veldsink,
M. Pechenizkiy: ICIE 1.0: A Novel Tool for Interactive Contextual
Interaction Explanations. In: MIDAS 2018, PAP 2018: ECML PKDD 2018
Workshops, pp. 81-94, 2019.
- S.B. van der Zon, O. Zeev Ben Mordehai, T. Vrijdag,
W. van Ipenburg, J. Veldsink, W. Duivesteijn, M. Pechenizkiy:
BoostEMM - Transparent Boosting using Exceptional Model Mining.
In: Proceedings of the Second Workshop on MIning DAta for financial
applicationS (MIDAS 2017), pp. 5-14, 2017.
- W. Duivesteijn, M. Meeng, A. Knobbe: ROCsearch in a
Wider Context - A ROC-Guided Search Strategy for Subgroup Discovery and
Beyond. In: Proceedings of the First International Workshop on
Learning over Multiple Contexts (LMCE 2014), 2014.
- W. Duivesteijn: A Short Survey of Exceptional Model
Mining - Exploring Unusual Interactions Between Multiple Targets. In:
Proceedings of the 2014 International Workshop on Multi-Target
Prediction (MTP 2014), 2014.
- M. Meeng, W. Duivesteijn, A. Knobbe: ROCsearch - An
ROC-guided Search Strategy for Subgroup Discovery. In: Proceedings of
the 2014 Workshop on Knowledge Discovery, Data Mining and Machine
Learning (KDML 2014), p. 180, 2014.
- R.M. Konijn, W. Duivesteijn, M. Meeng, A. Knobbe: Cost-based Quality
Measures in Subgroup Discovery. In: Proceedings of the 3rd Quality
Issues, Measures of Interestingness, and Evaluation of data mining
models workshop (QIMIE 2013), PAKDD Workshops, pp. 404-415, 2013.
Back to the homepage.